Abstract: The concept of frailty provides a suitable way to introduce random effects in the model to account for association and unobserved heterogeneity. In its simplest form, a frailty is an unobserved random factor that modifies multiplicatively the hazard function of an individual or a group or cluster of individuals. In this paper, we study positive stable distribution as frailty distribution and two different baseline distributions namely Pareto and linear failure rate distribution. We estimate parameters of proposed models by introducing Bayesian estimation procedure using Markov Chain Monte Carlo (MCMC) technique. In the present study a simulation is done to compare the true values of parameters with the estimated value. We try to fit the proposed models to a real life bivariate survival data set of McGrilchrist and Aisbett (1991) related to kidney infection. Also, we present a comparison study for the same data by using model selection criterion, and suggest a better model.
Abstract: While conducting a social survey on stigmatized/sensitive traits, obtaining efficient (truthful) data is an intricate issue and estimates are generally biased in such surveys. To obtain trustworthy data and to reduce false response bias, a technique, known as randomized response technique, is now being used in many surveys. In this study, we performed a Bayesian analysis of a general class of randomized response models. Suitable simple Beta prior and mixture of Beta priors are used in a common prior structure to obtain the Bayes estimates for the proportion of a stigmatized/sensitive attributes in the population of interest. We also extended our proposal to stratified random sampling. The Bayes and the maximum likelihood estimators are compared. For further understanding of variability, we have also compared the prior and posterior distributions for different values of the design constants through graphs and credible intervals. The condition to develop a new randomized response model is also discussed.
Abstract: The present article discusses and compares multiple testing procedures (MTPs) for controlling the family wise error rate. Machekano and Hubbard (2006) have proposed empirical Bayes approach that is a resampling based multiple testing procedure asymptotically controlling the familywise error rate. In this paper we provide some additional work on their procedure, and we develop resampling based step-down procedure asymptotically controlling the familywise error rate for testing the families of one-sided hypotheses. We apply these procedures for making successive comparisons between the treatment effects under a simple-order assumption. For example, the treatment means may be a sequences of increasing dose levels of a drug. Using simulations, we demonstrate that the proposed step-down procedure is less conservative than the Machekano and Hubbard’s procedure. The application of the procedure is illustrated with an example.
Abstract: The detection of slope change points in wind curves depends on linear curve-fitting. Hall and Titterington’s algorithm based on smoothing is adapted and compared to a Bayesian method of curve-fitting. After prior spline smoothing of the data, the algorithms are tested and the errors between the split-linear fitted wind and the real one are estimated. In our case, the adaptation of the edge-preserving smoothing algorithm gives the same good performance as automatic Bayesian curve-fitting based on a Monte Carlo Markov chain algorithm yet saves computation time.
In this work, we study the odd Lindley Burr XII model initially introduced by Silva et al. [29]. This model has the advantage of being capable of modeling various shapes of aging and failure criteria. Some of its statistical structural properties including ordinary and incomplete moments, quantile and generating function and order statistics are derived. The odd Lindley Burr XII density can be expressed as a simple linear mixture of BurrXII densities. Useful characterizations are presented. The maximum likelihood method is used to estimate the model parameters. Simulation results to assess the performance of the maximum likelihood estimators are discussed. We prove empirically the importance and flexibility of the new model in modeling various types of data. Bayesian estimation is performed by obtaining the posterior marginal distributions as well as using the simulation method of Markov Chain Monte Carlo (MCMC) by the Metropolis-Hastings algorithm in each step of Gibbs algorithm. The trace plots and estimated conditional posterior distributions are also presented.