In this article, we introduce an extension referred to as the exponentiated Weibull power function distribution based on the exponentiated Weibull-G family of distributions. The proposed model serves as an extension of the two-parameter power function distribution as well as a generalization to the Weibull power function presented by Tahir et al. (2016 a). Various mathematical properties of the subject distribution are studied. General explicit expressions for the quantile function, expansion of density and distribution functions, moments, generating function, incomplete moments, conditional moments, residual life function, mean deviation, inequality measures, Rényi and q – entropies, probability weighted moments and order statistics are obtained. The estimation of the model parameters is discussed using maximum likelihood method. Finally, the practical importance of the proposed distribution is examined through three real data sets. It has been concluded that the new distribution works better than other competing models.
We propose a lifetime distribution with flexible hazard rate called cubic rank transmuted modified Burr III (CRTMBIII) distribution. We develop the proposed distribution on the basis of the cubic ranking transmutation map. The density function of CRTMBIII is symmetrical, right-skewed, left-skewed, exponential, arc, J and bimodal shaped. The flexible hazard rate of the proposed model can accommodate almost all types of shapes such as unimodal, bimodal, arc, increasing, decreasing, decreasing-increasing-decreasing, inverted bathtub and modified bathtub. To show the importance of proposed model, we present mathematical properties such as moments, incomplete moments, inequality measures, residual life function and stress strength reliability measure. We characterize the CRTMBIII distribution via techniques. We address the maximum likelihood method for the model parameters. We evaluate the performance of the maximum likelihood estimates (MLEs) via simulation study. We establish empirically that the proposed model is suitable for strengths of glass fibers. We apply goodness of fit statistics and the graphical tools to examine the potentiality and utility of the CRTMBIII distribution.
The Power function distribution is a flexible life time distribution that has applications in finance and economics. It is, also, used to model reliability growth of complex systems or the reliability of repairable systems. A new weighted Power function distribution is proposed using a logarithmic weight function. Statistical properties of the weighted power function distribution are obtained and studied. Location measures such as mode, median and mean, reliability measures such as reliability function, hazard and reversed hazard functions and the mean residual life are derived. Shape indices such as skewness and kurtosis coefficients and order statistics are obtained. Parametric estimation is performed to obtain estimators for the parameters of the distribution using three different estimation methods; namely: the maximum likelihood method, the L-moments method and the method of moments. Numerical simulation is carried out to validate the robustness of the proposed distribution.
Abstract: We introduce a new class of continuous distributions called the Ku maraswamy transmuted-G family which extends the transmuted class defined by Shaw and Buckley (2007). Some special models of the new family are provided. Some of its mathematical properties including explicit expressions for the ordinary and incomplete moments, generating function, Rényi and Shannon entropies, order statistics and probability weighted moments are derived. The maximum likelihood is used for estimating the model parameters. The flexibility of the generated family is illustrated by means of two applications to real data sets.
Abstract: Chen, Bunce and Jiang [In: Proceedings of the International Con ference on Computational Intelligence and Software Engineering, pp. 1-4] claim to have proposed a new extreme value distribution. But the formulas given for the distribution do not form a valid probability distribution. Here, we correct their formulas to form a valid probability distribution. For this valid distribution, we provide a comprehensive treatment of mathematical properties, estimate parameters by the method of maximum likelihood and provide the observed information matrix. The flexibility of the distribution is illustrated using a real data set.