Abstract: We introduce a new class of continuous distributions called the Ku maraswamy transmuted-G family which extends the transmuted class defined by Shaw and Buckley (2007). Some special models of the new family are provided. Some of its mathematical properties including explicit expressions for the ordinary and incomplete moments, generating function, Rényi and Shannon entropies, order statistics and probability weighted moments are derived. The maximum likelihood is used for estimating the model parameters. The flexibility of the generated family is illustrated by means of two applications to real data sets.
Abstract: We introduce a new class of the slash distribution using folded normal distribution. The proposed model defined on non-negative measure ments extends the slashed half normal distribution and has higher kurtosis than the ordinary half normal distribution. We study the characterization and properties involving moments and some measures based on moments of this distribution. Finally, we illustrate the proposed model with a simulation study and a real application.
Abstract: The generalized gamma model has been used in several applied areas such as engineering, economics and survival analysis. We provide an extension of this model called the transmuted generalized gamma distribution, which includes as special cases some lifetime distributions. The proposed density function can be represented as a mixture of generalized gamma densities. Some mathematical properties of the new model such as the moments, generating function, mean deviations and Bonferroni and Lorenz curves are provided. We estimate the model parameters using maximum likelihood. We prove that the proposed distribution can be a competitive model in lifetime applications by means of a real data set.
Abstract: Chen, Bunce and Jiang [In: Proceedings of the International Con ference on Computational Intelligence and Software Engineering, pp. 1-4] claim to have proposed a new extreme value distribution. But the formulas given for the distribution do not form a valid probability distribution. Here, we correct their formulas to form a valid probability distribution. For this valid distribution, we provide a comprehensive treatment of mathematical properties, estimate parameters by the method of maximum likelihood and provide the observed information matrix. The flexibility of the distribution is illustrated using a real data set.
Abstract: We study a new five-parameter model called the extended Dagum distribution. The proposed model contains as special cases the log-logistic and Burr III distributions, among others. We derive the moments, generating and quantile functions, mean deviations and Bonferroni, Lorenz and Zenga curves. We obtain the density function of the order statistics. The parameters are estimated by the method of maximum likelihood. The observed information matrix is determined. An application to real data illustrates the importance of the new model.