In this paper, we define and study a four-parameter model called the transmuted Burr XII distribution. We obtain some of its mathematical properties including explicit expressions for the ordinary and incomplete moments, generating function, order statistics, probability weighted moments and entropies. We formulate and develop a log-linear model using the new distribution so-called the log-transmuted Burr XII distribution for modeling data with a unimodal failure rate function, as an alternative to the log-McDonald Burr XII, log-beta Burr XII, log-Kumaraswamy Burr XII, log-Burr XII and logistic regression models. The flexibility of the proposed models is illustrated by means of three applications to real data sets.
Compositional data consist of known compositions vectors whose components are positive and defined in the interval (0,1) representing proportions or fractions of a “whole”. The sum of these components must be equal to one. Compositional data is present in different knowledge areas, as in geology, economy, medicine among many others. In this paper, we propose a new statistical tool for volleyball data, i.e., we introduce a Bayesian anal- ysis for compositional regression applying additive log-ratio (ALR) trans- formation and assuming uncorrelated and correlated errors. The Bayesian inference procedure based on Markov Chain Monte Carlo Methods (MCMC). The methodology is applied on an artificial and a real data set of volleyball.
Compositional data are positive multivariate data, constrained to lie within the simplex space. Regression analysis of such data has been studied and many regression models have been proposed, but most of them not allowing for zero values. Secondly, the case of compositional data being in the predictor variables side has gained little research interest. Surprisingly enough, the case of both the response and predictor variables being compositional data has not been widely studied. This paper suggests a solution for this last problem. Principal components regression using the 𝛼 -transformation and Kulback-Leibler divergence are the key elements of the proposed approach. An advantage of this approach is that zero values are allowed, in both the response and the predictor variables side. Simulation studies and examples with real data illustrate the performance of our algorithm.
We introduce a new family of distributions namely inverse truncated discrete Linnik G family of distributions. This family is a generalization of inverse Marshall-Olkin family of distributions, inverse family of distributions generated through truncated negative binomial distribution and inverse family of distributions generated through truncated discrete Mittag-Leffler distribution. A particular member of the family, inverse truncated negative binomial Weibull distribution is studied in detail. The shape properties of the probability density function and hazard rate, model identifiability, moments, median, mean deviation, entropy, distribution of order statistics, stochastic ordering property, mean residual life function and stress-strength properties of the new generalized inverse Weibull distribution are studied. The unknown parameters of the distribution are estimated using maximum likelihood method, product spacing method and least square method. The existence and uniqueness of the maximum likelihood estimates are proved. Simulation is carried out to illustrate the performance of maximum likelihood estimates of model parameters. An AR(1) minification model with this distribution as marginal is developed. The inverse truncated negative binomial Weibull distribution is fitted to a real data set and it is shown that the distribution is more appropriate for modeling in comparison with some other competitive models.