Abstract: Ranked set sampling and some of its variants have been applied successfully in different areas of applications such as industrial statistics, economics, environmental and ecological studies, biostatistics, and statistical genetics. Ranked set sampling is a sampling method that more efficient than simple random sampling. Also, it is well known that Fisher information of a ranked set sample (RSS) is larger than Fisher information of a simple random sample (SRS) of the same size about the unknown parameter of the underlying distribution in parametric inference. In this paper, we consider the Farlie-Gumbel-Morgenstern (FGM) family and study the information measures such as Shannon’s entropy, Rényi entropy, mutual information, and Kullback-Leibler (KL) information of RSS data. Also, we investigate their properties and compare them with a SRS data.
The Topp-Leone distribution is an attractive model for life testing and reliability studies as it acquires a bathtub shaped hazard function. In this paper, we introduce a new family of distributions, depending on Topp–Leone random variable as a generator, called the Type II generalized Topp– Leone–G (TIIGTL-G) family. Its density function can be unimodel, leftskewed, right-skewed, and reversed-J shaped, and has increasing, decreasing, upside-down, J and reversed-J hazard rates. Some special models are presented. Some of its statistical properties are studied. Explicit expressions for the ordinary and incomplete moments, quantile and generating functions, Rényi entropy and order statistics are derived. The method of maximum likelihood is used to estimate the model parameters. The importance of one special model; namely; the Type II generalized Topp–Leone exponential is illustrated through two real data sets.
The Lindley distribution has been generalized by many authors in recent years. However, all of the known generalizations so far have restricted tail behaviors. Here, we introduce the most flexible generalization of the Lindley distribution with its tails controlled by two independent parameters. Various mathematical properties of the generalization are derived. Maximum likelihood estimators of its parameters are derived. Fisher’s information matrix and asymptotic confidence intervals for the parameters are given. Finally, a real data application shows that the proposed generalization performs better than all known ones
A new distribution called the log generalized Lindley-Weibull (LGLW) distribution for modeling lifetime data is proposed. This model further generalizes the Lindley distribution and allows for hazard rate functions that are monotonically decreasing, monotonically increasing and bathtub shaped. A comprehensive investigation and account of the mathematical and statistical properties including moments, moment generating function, simulation issues and entropy are presented. Estimates of model parameters via the method of maximum likelihood are given. Real data examples are presented to illustrate the usefulness and applicability of this new distribution.
We introduce a new family of distributions based on a generalized Burr III generator called Modified Burr III G family and study some of its mathematical properties. Its density function can be bell-shaped, left-skewed, right-skewed, bathtub, J or reversed-J. Its hazard rate can be increasing or decreasing, bathtub, upside-down bathtub, J and reversed-J. Some of its special models are presented. We illustrate the importance of the family with two applications to real data sets.