In the form of a scholarly exchange with ChatGPT, we cover fundamentals of modeling stochastic dependence with copulas. The conversation is aimed at a broad audience and provides a light introduction to the topic of copula modeling, a field of potential relevance in all areas where more than one random variable appears in the modeling process. Topics covered include the definition, Sklar’s theorem, the invariance principle, pseudo-observations, tail dependence and stochastic representations. The conversation also shows to what degree it can be useful (or not) to learn about such concepts by interacting with the current version of a chatbot.
Abstract: The association between bivariate binary responses has been studied using Pearson’s correlation coefficient, odds ratio, and tetrachoric correlation coefficient. This paper introduces a copula to model the association. Numerical comparisons between the proposed method and the existing methods are presented. Results show that these methods are comparative. However, the copula method has a clearer interpretation and is easier to extend to bivariate responses with three or more ordinal categories. In addition, a goodness-of-fit test for the selection of a model is performed. Applications of the method on two real data sets are also presented.
Abstract: A new family of copulas generated by a univariate distribution function is introduced, relations between this copula and other well-known ones are discussed. The new copula is applied to model the dependence of two real data sets as illustrations.