Approximately 15% of adults in the United States (U.S.) are afflicted with chronic kidney disease (CKD). For CKD patients, the progressive decline of kidney function is intricately related to hospitalizations due to cardiovascular disease and eventual “terminal” events, such as kidney failure and mortality. To unravel the mechanisms underlying the disease dynamics of these interdependent processes, including identifying influential risk factors, as well as tailoring decision-making to individual patient needs, we develop a novel Bayesian multivariate joint model for the intercorrelated outcomes of kidney function (as measured by longitudinal estimated glomerular filtration rate), recurrent cardiovascular events, and competing-risk terminal events of kidney failure and death. The proposed joint modeling approach not only facilitates the exploration of risk factors associated with each outcome, but also allows dynamic updates of cumulative incidence probabilities for each competing risk for future subjects based on their basic characteristics and a combined history of longitudinal measurements and recurrent events. We propose efficient and flexible estimation and prediction procedures within a Bayesian framework employing Markov Chain Monte Carlo methods. The predictive performance of our model is assessed through dynamic area under the receiver operating characteristic curves and the expected Brier score. We demonstrate the efficacy of the proposed methodology through extensive simulations. Proposed methodology is applied to data from the Chronic Renal Insufficiency Cohort study established by the National Institute of Diabetes and Digestive and Kidney Diseases to address the rising epidemic of CKD in the U.S.
Pub. online:8 Nov 2022Type:Statistical Data ScienceOpen Access
Journal:Journal of Data Science
Volume 20, Issue 4 (2022): Special Issue: Large-Scale Spatial Data Science, pp. 439–460
Abstract
In the last few decades, the size of spatial and spatio-temporal datasets in many research areas has rapidly increased with the development of data collection technologies. As a result, classical statistical methods in spatial statistics are facing computational challenges. For example, the kriging predictor in geostatistics becomes prohibitive on traditional hardware architectures for large datasets as it requires high computing power and memory footprint when dealing with large dense matrix operations. Over the years, various approximation methods have been proposed to address such computational issues, however, the community lacks a holistic process to assess their approximation efficiency. To provide a fair assessment, in 2021, we organized the first competition on spatial statistics for large datasets, generated by our ExaGeoStat software, and asked participants to report the results of estimation and prediction. Thanks to its widely acknowledged success and at the request of many participants, we organized the second competition in 2022 focusing on predictions for more complex spatial and spatio-temporal processes, including univariate nonstationary spatial processes, univariate stationary space-time processes, and bivariate stationary spatial processes. In this paper, we describe in detail the data generation procedure and make the valuable datasets publicly available for a wider adoption. Then, we review the submitted methods from fourteen teams worldwide, analyze the competition outcomes, and assess the performance of each team.
Pub. online:3 Nov 2022Type:Statistical Data ScienceOpen Access
Journal:Journal of Data Science
Volume 20, Issue 4 (2022): Special Issue: Large-Scale Spatial Data Science, pp. 512–532
Abstract
Large or very large spatial (and spatio-temporal) datasets have become common place in many environmental and climate studies. These data are often collected in non-Euclidean spaces (such as the planet Earth) and they often present nonstationary anisotropies. This paper proposes a generic approach to model Gaussian Random Fields (GRFs) on compact Riemannian manifolds that bridges the gap between existing works on nonstationary GRFs and random fields on manifolds. This approach can be applied to any smooth compact manifolds, and in particular to any compact surface. By defining a Riemannian metric that accounts for the preferential directions of correlation, our approach yields an interpretation of the nonstationary geometric anisotropies as resulting from local deformations of the domain. We provide scalable algorithms for the estimation of the parameters and for optimal prediction by kriging and simulation able to tackle very large grids. Stationary and nonstationary illustrations are provided.
Pub. online:14 Oct 2022Type:Computing In Data ScienceOpen Access
Journal:Journal of Data Science
Volume 20, Issue 4 (2022): Special Issue: Large-Scale Spatial Data Science, pp. 475–492
Abstract
We describe our implementation of the multivariate Matérn model for multivariate spatial datasets, using Vecchia’s approximation and a Fisher scoring optimization algorithm. We consider various pararameterizations for the multivariate Matérn that have been proposed in the literature for ensuring model validity, as well as an unconstrained model. A strength of our study is that the code is tested on many real-world multivariate spatial datasets. We use it to study the effect of ordering and conditioning in Vecchia’s approximation and the restrictions imposed by the various parameterizations. We also consider a model in which co-located nuggets are correlated across components and find that forcing this cross-component nugget correlation to be zero can have a serious impact on the other model parameters, so we suggest allowing cross-component correlation in co-located nugget terms.
Abstract: This paper evaluates the efficacy of a machine learning approach to data fusion using convolved multi-output Gaussian processes in the context of geological resource modeling. It empirically demonstrates that information integration across multiple information sources leads to superior estimates of all the quantities being modeled, compared to modeling them individually. Convolved multi-output Gaussian processes provide a powerful approach for simultaneous modeling of multiple quantities of interest while taking correlations between these quantities into consideration. Experiments are performed on large scale data taken from a mining context.