Journal of Data Science logo


Login Register

  1. Home
  2. Issues
  3. Volume 13, Issue 1 (2015)
  4. Predicting Loss Reserves Using Quantile ...

Journal of Data Science

Submit your article Information
  • Article info
  • Related articles
  • More
    Article info Related articles

Predicting Loss Reserves Using Quantile Regression Running Title: Quantile Regression Loss Reserve Models
Volume 13, Issue 1 (2015), pp. 127–156
Chan J. S .K.  

Authors

 
Placeholder
https://doi.org/10.6339/JDS.201501_13(1).0008
Pub. online: 4 August 2022      Type: Research Article      Open accessOpen Access

Published
4 August 2022

Abstract

Abstract: Traditional loss reserves models focus on the mean of the conditional loss distribution. If the factors driving high claims differ systematically from those driving medium to low claims, alternative models that differentiate such differences are required. We propose quantile regression model loss reserving as the model offers potentially different solutions at distinct quantiles so that the effects of risk factors are differentiated at different points of the conditional loss distribution. Due to its nonparametric nature, quantile regression is free of the model assumptions for traditional mean regression models, including homogeneous variance across risk factors and symmetric and light tails, etc. These model assumptions have posed a great barrier in applications as they are often not met in the claim data. Using two sets of run-off triangle claim data from Israel and Queensland, Australia, we present the quantile regression approach that illustrates the sensitivity of claim size to risk factors, namely the trend pattern and initial claim level, in different quantiles. Trained models are applied to predict future claims in the lower run-off triangle. Findings suggest that reliance on standard loss reserves techniques gives rise to misleading inferences and that claim size is not homogeneously driven by the same risk factors across quantiles.

Related articles PDF XML
Related articles PDF XML

Copyright
No copyright data available.

Keywords
Quantile regression loss reserves run-off triangle

Metrics
since February 2021
693

Article info
views

457

PDF
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

Journal of data science

  • Online ISSN: 1683-8602
  • Print ISSN: 1680-743X

About

  • About journal

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • JDS@ruc.edu.cn
  • No. 59 Zhongguancun Street, Haidian District Beijing, 100872, P.R. China
Powered by PubliMill  •  Privacy policy