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Abstract: Traditional loss reserves models focus on the mean of the conditional loss
distribution. If the factors driving high claims differ systematically from those
driving medium to low claims, alternative models that differentiate such differences
are required. We propose quantile regression model loss reserving as the model
offers potentially different solutions at distinct quantiles so that the effects of
risk factors are differentiated at different points of the conditional loss distribution.
Due to its nonparametric nature, quantile regression is free of the model
assumptions for traditional mean regression models, including homogeneous
variance across risk factors and symmetric and light tails, etc. These model
assumptions have posed a great barrier in applications as they are often not met in
the claim data. Using two sets of run-off triangle claim data from Israel and
Queensland, Australia, we present the quantile regression approach that illustrates
the sensitivity of claim size to risk factors, namely the trend pattern and initial
claim level, in different quantiles. Trained models are applied to predict future
claims in the lower run-off triangle. Findings suggest that reliance on standard loss
reserves techniques gives rise to misleading inferences and that claim size is not
homogeneously driven by the same risk factors across quantiles.

Key words: Quantile regression, loss reserves, run-off triangle, risk heterogeneity,
extreme outlier.

1. Introduction

An insurance company promises to pay claims to the insureds if some defined events (injury,
accident, death, etc.) occur. However in many cases, claims originating ina particular year are
often settled with a time delay of years or perhaps decades. Therefore, a method to estimate
the expected liability is needed so that the insurer can calculate the profit of written policies, and
allocate reserved assets to ensure liquidity. Since loss reserves generally represent by far the
largest liability, and the greatest source of financial uncertainty in an insurance company, an
appropriate valuation of insurance liabilities including risk margin is one of the most important
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issues for a general insurer. Risk margin is the component of the value of claims liability that
relates to the inherent uncertainty.

The significance of providing appropriate valuation of insurance liabilities is well un-
derstood by the actuarial profession and has been debated by both practitioners and academic
actuaries alike. Specifically, the aim is to develop statistical models, the loss reserve models to
analyse loss reserves data in the format of a run-off triangle and predict future claims in the lower
triangle. A run-off triangle is a matrix where each row corresponds to the year of an accident
(the so-called policy/accident year), and each column corresponds to the number of years
between the accident year, and the year in which the claim was made (the so-called
development/lag year). LetY;; denote the value of claims paid by an insurance company in
policy year i, and settled after j — 1 years (or lag year j). The observation Y;;, i =
1,...,n; j < n-1i + 1, overaperiod of n policy years can be presented by a run-off triangle
in Figure 1.
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Figure 1: Run-off triangle for loss reserves data

Usingthe T, = n(n + 1)/2 observed claims in the upper triangle, we aim to predict the
T; = n(n — 1)/2 future claims in the lower triangle. The values in each diagonal correspond
to claims in one single calendar year.

There have been several approaches considered which range from those that involve little
analysis of the underlying claim portfolio to those that involve significant analysis of the
uncertainty using a wide range of information and techniques, including sophisticated stochastic
models (Taylor [22] and Klugman [12]). Traditional models using the generalized linear model
approach (de Jone and Heller [8]) in the stochastic framework are based on loss distributions
which are estimated using historical data and the claims liability is evaluated using central
estimate which is typically defined as the expected value over the entire loss distribution.
However these models have implicit assumptions of risk homogeneity which refers to
homogeneous loss distribution across risk factors and absence of catastrophic losses. With the
inherent uncertainty that may arise, the mean estimator is not statistically robust and therefore
sensitive to outlier claims. Hence claims liability measures often differ from their central
estimates.
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In practice, the approach adopted is typically to then set an insurance provision so that, to a
specified probability say 75%, the provision will eventually be sufficient to cover the run-off
claims. When this margin is then added to the central estimate, it should provide a reasonable
valuation of claims liability and therefore increases the likelihood of providing sufficient
provision to meet the claims liability. Moreover actuaries are more concerned with high claims
due to their possibly adverse impact on the insurance fund. In this regard, it is worth noting
that the more volatile a portfolios runoffs or those that display heavy tailed features may
require a higher risk margin, since the potential for large swings in reserves is greater than that
of a more stable portfolio.

To address these issues, percentile or quantile methods is most prevalent in practice and this
provides a good foundation or the quantile regression models we consider. The quantile
regression is proposed by Koenker and Bassett [13] and popularized, in part, by Buchinsky [4]
and Koenker and Hallock [14] for the advancement of loss reserves methodology. The quantile
of a distribution for a random variable Y is defined as y, = inf {y: Fy(y) = t}where1 —
7 is the probability of ruin in actuarial studies.

The quantile regression model has several advantages over the traditional loss reserves
models. Firstly, it differentiates risk factors that drive high level claims from those which drive
low level claims. It is, therefore, possible to determine if loses are homogeneously driven by
the same determinants and to distinguish risk factors impacting resolution costs of expensive
loses from the factors impacting less expensive loses. Hence quantile regression loss reserve
models analyse risk factors at all points of the distribution particularly the upper tails for
expensive loses instead of purely the center.

Secondly, quantile regression is free from some disadvantages of the traditional models:
omitted variables bias, heteroskedasticity and non-normal error distributions, all of which prevail
in the loss reserves data. Omitted variables bias refers to the bias in the outcome variable when
there are many other unmeasured factors that are not included in the mean of data distribution.
Hence the outcomes cannot change by more than some upper limit set by the measured factors,
but may change by less when other unmeasured factors are limiting (Cade and Noon [5]). In
loss reserves model, failure to include all relevant variables often occurs because of insufficient
knowledge of the many underlying risk factors that drive the claim process or the inability to
measure all relevant processes. This is particularly the case when aggregate instead of individual
claims are modelled. This omitted variables bias are allowed for in different levels of quantile
regression.

Thirdly, quantile regression requires no specification of how variance changes are linked to
the mean and hence it can be applied to model heterogeneous variation in loss distribution. In
loss reserves model, heteroskedasticity caused by extreme claims often results in inflated
variance estimates, leading to contaminated parameter estimates in the mean of the loss
distribution. In quantile regression, effects of outliers appear only in the higher quantiles on the
two ends as they adopt heavier weights only in the loss function of higher quantile. Thus, quantile
regression is robust to the presence of outliers.
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Lastly, most traditional models assume Gaussian errors within the generalized linear model
framework. Others consider errors in the exponential family. Chan, Choy and Makov [7]
proposed the generalized-t (GT) distribution which contains several important families of
distributions including the Student-t, exponential power and uniform distributions for the log of
claim sizes. However they remarked that as the log-linear model is more sensitive to low values
than large values, the residuals in the empirical study are negatively skewed and that one should
consider some skewed error distributions. While the GT distribution is sophisticated and general
but still inappropriate to allow for skewed errors after logarithmic transformation, the quantile
regression is perhaps a simple and yet more efficient alternative when the error distribution is
nonnormal (Buchinsky,1998) as the quantile regression avoids this distribution assumption
altogether. In summary, quantile regression provides a way of understanding and testing how the
relationships between claims and other risk factors change across the distribution of conditional
claims and it avoids the distribution assumptions in mean regression.

Although the median and quantile regression have not been used as extensively as the
mean regression, using the ordinary least square (OLS) method in particular, in the empirical
literature, quantile regression has been applied in diverse fields including Buchinsky [2] , [3], [4]
on labor economics, Eide and Showalter [9] on earnings mobility, Cade and Noon [5] and Cade,
Terrell and Schroeder [6] on ecology and Eide and Showalter (1998) on education, etc. Financial
applications include Barnes and Hughes [1] and Engle and Manganelli [10] in Value at Risk
estimation. Quantile regression in insurance applications can be found in Portnoy [21] for the
graduation of mortality table rates, Pitt [20] for the claim termination rates for income protection
insurance and Kudryavtsev [19] for rate-making in heterogeneous insurance portfolios. However
none of these works focus on loss reserve models for run-off triangle using the trend of claims to
predict future claims. This paper aims to pioneer the application in this area.

The paper is organized as follows. In Section 2, the theory of quantile regression is presented.
Section 3 describes two empirical examples in which quantile regression is applied to the loss
reserves data presented in a run-off triangle. Trends of loss across lag years are identified at
different quantile levels. Section 4 predicts future claims using the trained models and assesses
the predicted total future claims by comparison with those using the chain ladder (CL) method
and the model of Chan, Choy and Makov [7] with GT distribution. Lastly, Section 5 concludes
the merits of quantile regression in loss reserves model and suggests future development for the
model.

2. Quantile regression

Most regression models focus on estimating the mean of the data distribution as some
functions of predictor variables. Focusing entirely on changes in the mean may, however, fail to
identify and distinguish real relationships between variables in heterogeneous distribution. This
is particularly problematic for regression models with heterogeneous variances, which are
common in finance and insurance. A regression model with heterogeneous variance implies that
there is not a single rate of change that characterizes changes in the data distribution.
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Quantile regression, developed by Koenker and Bassett [13], is an extension of the OLS
estimation of the conditional mean to a collection of models with different conditional quantile
functions. As the median regression estimator minimizes the symmetrically weighted sum of
absolute errors (where the weight equals to 0.5) to estimate the conditional median function, other
conditional quantile functions are estimated by minimizing an asymmetrically weighted sum of
absolute errors, where the weights are functions of the quantile of interest. Suppose we have a
model

Yi=xB+e

where g is an unknown p X 1 vector of regression parameters, x; is a p x 1vector of predictors,
Y; is the outcome variable and ¢; is an unknown error term. Ordinary regression minimizes
¥; €2 whereas median regression minimizes ¥;|¢;|. Koenker and Basset [13] “tilted’ the absolute
function called the loss or check or tilt function

pe(€;) = €(t — 1 (€<0)) 1)
to produce the t—th (t € (0, 1)) conditional quantile of Y; given x;
QT (il X)) = xiBy, (2
where B, minimises
Xipe i — xiB) 3)

Note that 0.5Y; |€; | = i €;(0.5 — I (¢ ; < 0)) for median regression. The loss function in
(1) can be written as
pe(€) = € [(t —DI(e; < 0) +7l(e; 2 0)],

showing that the weights are symmetric for the median regression (t = 0.5) and asymmetric
otherwise. Their plots are given in Figure 2 for various quantile levels t as well as for the OLS
regression.
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Figure 2: Loss functions for mean, median and quantile (t = 0.75, 0.9, 0.95, 0.975) regressions.

The minimization of (3) can be performed using the R package quanreg

library(quantreg)
rq(y~x,tau=taus,method="br")

contrinbuted by Koenker where taus is a vector of quantile levels T and "br" is the default
method of estimation called the Simplex method which is the modified version of the Barrodale
and Roberts algorithm described in Koenker and d’Orey [13], [18]. This method is recommended
for moderate sized problems (n < 5, 000 and p < 20 where p is the number of parameters in the
model). It is advantagous to use the Frisch-Newton interior point method "fn" for larger problems
and the FrischNewton approach with preprocessing "pfn" (Koenker and Portnoy [16]) for very
large problems. Official releases of R and the install package of quantreg are available at
http://lib.stat.cmu.edu/R/CRAN/. See R documentation for other options in quantreg.

In quantile regression, the conditional distribution of Y given x is traced across levels of t
with g, estimated in (3) using different values of . Hence the model permits parameter
heterogeneity across levels of claim as described by the quantile point 7. In the quantile plot of B,
against, a significant variation of f; implies that the effect of x; changes as the level of claim
increases. Note that all observations are used to estimate the quantile regression parameters and
there is no partitioning of data performed on the outcome variable as this would incur sample
selection bias.
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Although many papers on quantile regression assume that the errors are independently and

identically distributed (i.i.d.), the only necessary assumption concerning ¢; is
Q= (e lx) =0

that is, the 7-th conditional quantile of the error term equals to zero. Hence the estimates
. are nonparametric in the sense that no parametric distribution is assumed for €;. The quantile
regression estimates in (2) are an ascending sequence of surfaces that are above an increasing
proportion of sample observations with increasing quantile levels . This operational
characteristic extends the concepts of quantiles, order statistics, and rankings to the linear model
(Gutenbrunner, Jureckova, Koenker and Portnoy [11]; Koenker and Machado [15]). Quantile
regression retains its statistical properties under any linear or nonlinear monotonic transformation
of Y as a consequence of this ordering property (Koenker and Machado [15]). Thus it is possible
to use a nonlinear transformation, e.g. logarithmic transformation, to estimate linear regression
quantiles and then transform back the estimates to the original scale without any loss of
information. Moreover parameter estimates 5, have an asymptotic normal distribution

Va(Be — o) S N(O, 5,

SO tests can be constructed using critical values from the normal distribution (Barnes and Hughes

[1]).
3. Expirical Example

To demonstrate the application of quantile regression in modelling loss reserves, two loss
reserves data sets, from Israel and Queensland, Australia respectively, are analyzed. Some
general trends are obvious in both data. Given a policy period (year for the Israel data and
quarter for the Queensland data), the amount of claims paid follows an increasing trend to a
certain lag period and then a decreasing trend thereafter.Tablel reports the means of claim
over policy periods for both data and they demonstrate this trend pattern with a peak at the 4-
th and 9-th lag period respectively.
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Table 1: Average claim across lag year for the loss reserves data from Israel and Queensland, Australia.

Lag period Israel Queensland Lag period Israel Queensland
1 2081.28 11547661 13 305.50 69890238
2 6443.53 41908236 14 259.40 63372664
3 7631.06 58511367 15 224.00 57216920
4 *0243.27 66697013 16 108.33 50841161
5 7671.79 70051518 17 38.01 44561161
6 6229.31 73975219 18 14.00 38616361
7 5133.75 77127866 19 34505561
8 3268.82 77505303 20 20871756
9 2537.30 77874046 21 26987458
10 1191.22 76415123 22 20967506
11 1058.75 76228353 23 19152192
12 530.43 72769273 24

* Peak of the trend.

On the other hand, there are no obvious trends across policy periods for each lag period. As
the level of claim is positive continuous, a logarithm transformation is employed and such
transformation will not affect the accuracy of quantile regression. To model the trend pattern of
claims across lag-period, we include in the linear function of risk factors the first and second
order effects of lag-period and the standardized log initial level of claims or exposure z;; since
the exposure for each policy period affects the levels of claim through out the lag-periods. As a
result, the model for the loss reserves data is

QT(lnyij |Zii)= Bro+ B‘rl ><j+ﬂr2 X j%+ ﬁr3 X Zij (4)
where the quantile levels are chosen to include T = 0.025, 0.05, 0.1, 0.25, 0.75, 0.9, 0.95, 0.99
apart from the median = = 0.5. This set of quantile levels is adopted in the analyses of both loss
reserves data.
For model comparison, three criteria, namely the root mean squared error (RMSE), sum
of weighted residuals (SWR) and percentage total (PT), defined as:

1
n n—-i+l 2
)

1
RMSE = HZ z (vij —371'1')2
i=1 j=1
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n n—-i+1

1 -
SWR:HZ Z pe(vij = 9ij),
i=1 j=1

n n—i+1 g5
_ =1 %=1 Yij
“yn n—i+1

i=1Zj=1 Yij

are proposed. They measure the model-fit with respect to observations, model-fit with respect to
asymmetrically weighted loss function (1) and prediction accuracy by comparing predicted totals
with observed totals based on the upper triangle respectively. We note that SWR is only defined
for quantile regression models using (1) and model with RT closest to 100 and RMSE and/or SWR
the smallest is preferred.

PT X 100%,

3.1 Loss reserves data for Israel

The data are the amount of claims paid to the insureds of an insurance company in Israel
during the period of 1978 to 1995 (n = 18 years). The upper triangle has N = 171 observations
and the 153 observations in lower triangle are to be estimated. For mathematical convenience,
two zero claims are replaced by 0.01. This data set, as reported in the upper-triangle of Table 2,
has been analyzed in Chan, Choy and Makov (2008). There are two extremely large claims,
amount to 11,920 and 15,546 dollars, in the 7-th lag year of policy year 1984 and in the 4-th
lag year of policy year 1992, respectively. They are outliers as their neighboring claims are much
lower in magnitude. These outliers distort the general trend patterns in the data and inflate the
standard errors of the model parameters leading to ravaged estimates for loss reserving. These

Table 2: Observed and predicted claims in the run-off triangle using 0.75 quantile level for the Israel
loss reserves data.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1978| 3323 8332 9572 10172 7631 3855 3252 4433 2188 333 199 692 311 001 405 293 76 14|
1979| 3785 10342 8330 7849 2839 3577 1404 1721 1065 156 35 259 250 420 6 1 001
1980| 4677 9989 8746 10228 8572 5787 3855 1445 1612 626 1172 589 438 473 370 31 14
1981| 5288 8089 12839 11828 7560 6383 4118 3016 1575 1985 2645 266 38 45 115|871 35 14
1982| 2294 9869 10242 13808 8775 5419 2424 1597 4149 1296 917 295 428 369|165 77 34 14
1983| 3600 7514 8247 9327 8584 4245 4096 3216 2014 593 1188 691 368 169 79 34 14
1984| 3642 7394 9838 9733 6377 4884 11920 4188 4492 1760 944 921|636 340 170 79 35 14
1985| 2463 5033 6980 7722 6702 7834 5579 3622 1300 3069 1370 621 331 165 77 34 14
1986| 2267 5959 6175 7051 8102 6339 6978 4396 3107 903 | 1780 1087 621 331 165 77 34 14
1987| 2009 3700 5298 6885 6477 7570 65856 3871|2691 1757 1073 613 327 163 76 33 14
1988| 1860 5282 3640 7538 5157 5766 2678 1749 1068 609 325 162 76 33 13
1989 2331 3517 5310 6066 10149 9265 2717 1774 1083 618 330 165 77 34 14
1990| 2314 4487 4112 7000 11163 10057 5205 3888 2716 1773 1083 618 330 165 77 34 14
1991| 2607 3952 8228 7895 9317 6565 5245 3918 2736 1787 1091 623 332 166 77 34 14
1992| 2595 5403 6579 15546 | 8405 7681 6563 5243 3917 2736 1786 1091 623 332 166 77 34 14
1993| 31565 4974 7961 8511 7778 6646 5310 3967 2770 1809 1105 631 337 168 78 34 14
1994| 2626 5704 8605 8411 7687 6568 5247 3920 2738 1788 1092 623 333 166 77 34 14
1995| 2827 | 7398 8271 8646 8451 7723 6599 5273 3939 2751 1796 1097 626 334 167 78 34 14
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two outliers can be seen in Figure 3 which plots the trend of claims and their means in Table 1
across lag-year. For robustness consideration, Chan, Choy and Makov [7] suggested using the
GT distribution which includes both platykurtic and leptokurtic distributions to accommodate
these irregular claims.
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Figure 3: Claim across lag period for the loss reserves data from Israel.

Figure 3 further shows that the claim payments for each policy year follows two distinct
increasing-then-decreasing trend patterns: during 1978 to 1983, the trend increases to a high peak
at approximately the 4-th lag year and then decreases thereafter whereas during 1984 to 1995,
the trend increases slowly to a lower peak at about the 6-th lag year and then decreases. Hence
Chan, Choy and Makov [7] further proposed a threshold model to incorporate a model shift after
1983 and a state space model to account for the interaction between the policy-year and lag-year
effects. The proposed threshold state space model with GT errors (called GT model) was
implemented using Bayesian approach. They demonstrated that the GT model out-performed the
popular chain-ladder (CL) model in model-fit for claims in the upper run-off triangle. Refer to
Section 6.4 of Chan, Choy and Makov [7] for details of the CL model. Although the data are not
adjusted for inflation, it successfully demonstrates the ability of GT model to capture various
sources of variability. We propose modelling the data using quantile regression. Resultant
regression quantiles are graphed in Figure 4 (a) and (b) for the log claim and claim respectively.
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(a) Quantile regression of Log Claim at z_ij=0 for Israel
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(b) Quantile regression of Claim at z_ij=0 for Israel
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Figure 4: Quantile regression lines for (a) the logarithm of claims, In Y;;, and (b) claims, Y;;, for Israel

loss reserves data.
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The quantiles for log claim show less variation in higher level claims and more variation in
lower level claims showing a phenomenon of concern when logarithmic transformation is taken.
The asymmetric variance violates the constant variance assumption in the mean regression model,
in particular the GT model, but such assumption is not required in quantile regression, an
advantage of employing quantile regression over mean regression for modelling loss reserves
data. Moreover the two zero outliers shift the error distribution to negatively skewed which
violates the GT error assumption in the GT model. On the other hand, they affect only the lower
quantiles in quantile regression and such effect disappears after taking exponential transformation,
demonstrating another advantage of using quantile regression. Some quantiles cross over in
Figure 4(a) and the crossover effect becomes more apparent in Figure 4(b) after taking
exponential transformation. Now the quantiles for larger claims show more variation and such
variation gradually disappears across lag-year when the level of claims drops to zero. Moreover
the smaller gaps between lower quantiles and wider gaps between higher quantiles show that the
conditional distribution of claims is heavily skewed to the right, that is, the risk of expensive
losses is likely to be higher during the early lag-years. To maintain solvency and prevent the risk
of bankruptcy for a company, perhaps insurers should achieve a higher level of risk protection
by reserving fund at the quantile level =0.75 instead of at the mean in Chan,Choy and Makov

[71.
3.2 Loss reserves data for Queensland, Australia

The data are the amount of total incurred cost for the compulsory third party (CTP) policies
in Queensland, Australia. Observed figures are defined as case estimates plus payment to date
for each claim. All values have been inflated to December 2008 dollars. The data is summarized
by policy quarters (instead of year) and development/lag quarters in the upper triangle of Table
3. Since there is one major legislative change in December 2002, the data start from 2002 onward
to avoid the influence of legislative change. Covering the period of December 2002 to June 2008,
the data contain 23 quarters and 276 observations. The aim of the analysis is to predict the 253
future claims in the lower run-off triangle.

The plot of aggregated claims across lag-quarter for each policy quarter is shown in Figure
5. The plot shows that during the first period of Dec 2002 to Jun 2003, trend rises up very fast to
a high peak at about the 4-th lag quarter and levels off till the 12-th lag quarter before it drops,
during the second period of Sept 2003 to Sept 2005, the trend shows a more gentle increase to a
lower peak at approximately the 10-th lag quarter and then a decrease whereas during the last
period of Dec 2005 to Jun 2008, the trend rises up faster again till the 7-th lag quarter and then
declines thereafter. There is no obvious outliers in the data to distort the trend patterns.
Regression quantiles are plotted in Figures 6(a) and (b) for the log claim and claim respectively.
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Figure 5: Claimacross lag period for the loss reserves data from Queensland, Australia.
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(a) Quantile regression of Log Claim at z_ij=0 for
Queensland, Australia
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Figure 6: Quantile regression lines for (a) the logarithm of claims, InY;;, and (b) claims, Y;;, for Queensland,

Australia loss reserves data
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After taking logarithm transformation of the data, heterogeneous variance is again observed
in Figure 6(a), particularly due to the two extremely low outliers in the 1st lag quarter. While
they deflate the mean more, they affect only the lower quantiles. After transforming back, the
two outliers are no longer extreme while all other lag-one observations are closely located in the
lower quantiles. There is no crossover in both Figures 6(a) and (b) but the trend of mean is very
different from that of median: it rises from a lower level at a faster rate to reach a higher peak
and then decreases at a faster rate. These two distinct trend patterns, giving very different claim
predictions, are caused by the two extreme low outliers in the first lag quarter, high outliers
around the 6-th to 11-th lag quarters and low outliers again around the 12-th to 14-th lag quarters,
leading to steeper trends than the median which are more robust to outliers. Regression quantiles
are now spacing more even on the two sides of the median so that the conditional loss distribution
is about symmetric. Forecast using quantile level T = 0.75 is described in the next section.

4. Forecast

The aim of the analyses is to forecast future claims in the lower triangle of the loss reserves
data using (4) and the 75% regression quantile. The parameter estimates are given in Tables 4
and 5 for the two loss reserves data. Forecasts of loss reserves are given in the lower triangle of
Tables 2 and 3.

Entries in the first diagonal of the lower triangle (highlighted in dark yellow in Table 2 for
illustration) are the one-period ahead forecasts over all policy periods and its total is the amount
of reserves insurers to pay for the claims in one period time. Similarly, the second diagonal total
gives the reserves for the second period in the future using the two-period ahead forecast and
hence the sum of all diagonal totals or all entries in the lower triangle gives the total reserves for
the future (n — 1) periods using the (n — 1)-period ahead forecast. Tables 6 and 7 report the
diagonal totals and their sum across levels of upper quantiles as well as those using the mean and
median regressions for the two data sets.
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Table 4: Parameter estimates and their s.e. (in italic) for the Israel loss reserve data.

T mean  0.025 0.05 0.1 0.25 0.5 0.75 0.9 0.95 0.975
5o 8.0451 7.2016 T7.2897 T.2969 7.3876 &8.0538 8.4902 9.0085 8.9590 9.4586
0.2532 0.324{1 0.1567 0.0890 0.1343 0.2110 0.1934 0.1600 0.0507 0.1428

B 0.3602 0.8176 0.6090 0.6439 0.5717 0.3562 0.2796¢ 0.1469 0.1909 0.0711
0.0748 0.1841 0.1133 0.0716 0.0714 0.0756 0.0627 0.0449 0.0432 0.0536

Ba -0.0440 -0.1189 -0.0789 -0.0793 -0.0631 -0.0405 -0.0336 -0.0236 -0.0259 -0.0192
0.0046 0.0205 0.0179 0.0111 0.0074 0.0062 0.0047 0.0029 0.0030 0.0033
s 0.0039 0.2296 0.1234 0.1245 0.0419 0.0162 0.0197 0.0109 0.0404 -0.0224
0.0939 0.1338 0.0195 0.0268 0.0471 0.0425 0.0467 0.0405 0.0509 0.0710

zp 4.091 3438 3859 4058 4530 4399 4160 3.111  3.685  1.853
Up 6516 5471 4744 5449 5899 6886 8707 10271 11056 13690

RMSE 2101 3096 3077 2737 2429 2027F 2273 331 3679 5397
SWR - 0.067 0.110 0.167 0271 0.204 0205 0.100 0.056 0.030%
PT 86.73  50.68 51.51 59.28 70.36 94.421 124.64 151.95 164.89 193.74

1 Best across quantile level 7.

Table 5: Parameter estimates and their s.e. (in italic) for the Queensland, Australia loss reserve data.

T mean  0.025 005 0.1 025 05 0.75 09 095 0975
By 16482 15314 15340 15572 16.348 17.018 17470 17.876 18.035 18.101
0.1066 1.9657 1.6000 0.170f 0.204f 0.0806 0.0858 0.1050 0.0904 0.0786

Bi 03380 0.4399 04555 04367 0.3297 0.2266 01621 0.1193 0.0955 0.0844
0.0245 0.3445 0.2765 0.0379 0.0351 0.0756 0.0135 0.0181 0.0181 0.0155

By  -0.0156 -0.0185 -0.0194 -0.0190 -0.0151 -0.0108 -0.0085 -0.0073 -0.0062 -0.0056
0.0012 0.0150 0.0118 0.0018 0.0015 0.0062 0.0005 0.0008 0.0009 0.0007

B3 0.0231 0.0302 0.0792 0.0972 0.0635 0.1180 0.0795 0.0377 0.0501 0.0483
0.0429 0.2876 0.1764 0.0404 0.029f 0.0425 0.0244 0.0203 0.0214 0.0206

z, 1083 11.91 1177 1147 1089 1053 957 823  7.66  7.61
v 89.76 6141 67.04 7092 7573 8113 8391 9473 93.07 100.13
RMSE* 1781 31.81 2956 2653 1941 14.18f 1618 2555 30.68 33.25
SWR - 0.050 0.064 0.080 0.131 0133 00904 0.047 0.025 0.013%
PT 9560 5723 6153 66.96 81.26 08.80t 111.78 132.08 14053 14565

* RMSE = RMSE* x 10° and y, =y x 10%,

t Best across quantile level 7.
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Table 6: Estimates of loss reserve at diagonals of lower triangle and their total for the Israel loss reserve
data

Diag. mean 0.5 0.75 0.9 0.95 0.975
1 4282736 4770133 62810.29 T4938.37  82037.63 03548.19

2 37473.91 4242024  55506.57  65046.44  T2102.71 T9647.80
3 31310.20  36155.34 47318770  54858.87  61510.45 66098.56
4 24813.25  29391.11 38739.55  44850.59  50786.19 53390.20
5 18543.33  22670.38  30339.01 35473.23  40481.64 41915.07
6 13003.17 16515.61 22650.78  27091.38  31077.77 31948.64
i 8520.76 11319.75  16074.50 19946.16  22934.49 23615.60
8 5109.97 727578  10816.59 14136.90 16242.43 16908.55
9 2047.18 4373.71 6386.69 9631.61 11020.65 11714.45
10 1547.73 2453.39 4140.85 6299.18 T153.57 7842.28
11 751.66 1281.65 2347.20 3948.03 4434.53 5064.42
12 336.98 622.32 1251.70 2365.53 2618.63 3147.53
13 139.17 280.21 626.21 1349.75 1467.92 1873.74
14 52.77 116.49 292.27 T27.72 T75.19 1059.57
15 18.21 44.25 125.60 364.47 370.53 558.42
16 5.55 14.84 47.75 161.94 164.30 262.26
17 1.30 3.82 13.85 54.52 54.12 92.74

Total 18749250  222739.20 299988.12 361244.70  405241.77  4386588.30
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Table 7: Estimates of loss reserve at diagonals of lower triangle and their total for the Queensland,
Australia loss reserve data.

Diag. mean 0.5 0.75 0.9 0.95 0.975
1 1222212592 1374445643 1440262827 1559190250 1669416383 1740823245
2 1198052810 1352347400 1306411002 1400200616 1502072003 1650684648
3 1167171458 1320046559 1343727080 1414062606 1507904148 1572249246
1 1125788003 1276062117 1282355378 1331148747 1417601635 1470266551
] 1074121052 1222095146 1212818621 1242527192 1322454610 1381701174
] 1012032540 1158553024 1135007495 1149367638 1223300727 1280678031

040047344 1084484607 1053022477 10529906269 1121812541 1177374833

3 350406748 1002092012 965259125 054846774 1019032384 1072008848

9 772047636 913182549 874320539 856441878 016469564 968833421

10 680471240 819907669 T81984852 759302188 215513917 866146420

11 HBT520060 724542424 630942301 6645843201 T1T423811 TEE0TIBIS

12 496179230 620417178 590862208 574349572 623332649 GEOGTO5093

13 409211893 536834738 513320003 4RBO52600 534257211 STTET4405

14 329006453 448876404 431698241 409572794 451036828 491502098

15 257334031 367194827 356047600 JI6GRERO5T 374257407 411136176

16 195268661 202072645 287091999 271195317 304266529 337146485

17 143186195 227055900 225347099 212772548 241282519 260811822

18 100831436 169803067 171008766 161547853 185314824 209221255

=T

19 67443589 121089562 123951150 117260175 136162386 155261634
20 41927685 R0457649 B3R30372 70495841 03488102 107601663
21 23025954 47285608 20199416 47758190 56899103 66223418
22 0452673 20778153 22485183 21471520 25021411 30482882

Total 12712651072 15191325079 15040054802 15196242905 163494006902 17201859386

4.1 Loss reserves data for Israel

The parameter estimates as reported in Table 4 and their confidence intervals (Cls) across
quantile levels t are graphed in Figure 7.
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Figure 7: Parameter estimates and their 95% confidence intervals across quantiles for Israel loss reserves
data.

The Cls for By, 1 and 3, are very sharp showing high levels of significance except for the
very low quantiles and they change in sign and magnitude across quantile levels z. Koenker [18]
remarked that the endpoints of the Cls are not always symmetric about the estimate because of
the skewed sampling distribution of the estimates especially for smaller sample and more extreme
quantiles. In this case, the sampling variation for the quantiles can change rapidly over a short
interval of quantiles. As f; and j, describe the trend of claims across lag-years, their distinct
estimates on different quantile levels trace a gradual change in trend pattern from a higher peak
(yp) at earlier lag-year (x,,) to a lower peak at later lag-year as the quantile level decreases. The
coordinates of the peak (x,, y,) are reported in Table 4. This result is supported by the data plot
in Figure 3, agrees with the result of the sophisticated GT model but is achieved by a single
quantile regression model. Lastly Szwhich measures the effects of initial claim levels or exposure
on claim sizes, has positive but insignificant effects over nearly all quantile levels. Despite
insignificant, it shows intuitively how the later levels of claim depend on the initial claim size
just after policies were made.

The model performance measures RMSE, SWR and PT are reported in Table 2. The
corresponding RMSE and PT values for model using GT distribution are (1258.7, 97.62) and for
model using CL method are (1976.9, 97.71) respectively. Being the most sophisticated model,



Chan, J. S .K.

147

the GT model provides the best model-fit according to RMSE. Both the GT and CL models
perform the best in terms of PT whereas the median regression model is preferred among all
guantile regression models. However all the three models give underestimation of total claims in
the upper triangle. We note that the 75% quantile regression model performs slightly less
satisfactory which can be explained in Figure 8 by the mild overestimates for low claims and
underestimates for high claims.

Comparison of fitted models for Israel
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Figure 8: Predicted claim again observed claim in the upper triangle for Israel loss reserves data.

While over- and underestimations are expected using higher quantile levels, the 75%
guantile regression model gives a slight overestimate of overall total in the upper triangle as
compared to the GT, CL and median regression models which give under- estimates. The slight
overestimate is perhaps a realistic level of loss reserve fund for insurers to maintain solvency.
Lastly the 97.5% quantile regression model provides the most minimization of the asymmetric
loss function (1). Figure 9 plots the residuals of quantile regression model across quantile level
7. It can be seen that the distribution changes from right-skewed to left-skewed on increasing z.
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Figure 9: Residuals in the upper triangle of quantile regression models across quantile levels z for Israel
loss reserves data.

Predicted i-year ahead claim totals (i = 1,...,n — 1) using the mean, median and (upper)
quantile regressions and their overall totals across quantile levels are reported in Table 6 and
graphed in Figure 10(a).



Chan, J. S .K.

149

Total Prediction

Total Prediction

5.0e+08 1.0e+09 1.5e+08

0.0e+00

Prediction of diagonal totals in the lower triangle

= - = mean

S = median

© —— quantile

o

o

S

o

©

o

o

O —

(=]

=

o

o

s |

o

(o}

O —
1 1 T
5 10 15

Diagonal of lower triangle

(b) Prediction of diagonal totals in the lower triangle
for Queensland, Australia

== mean
—— median
—— quantile

I I I I
5 10 15 20

Diagonal of lower triangle
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loss reserves data.
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The level of reserves increases with increasing quantile level  and decreasing i-th lag year
diagonal in the lower triangle, but the gaps between the mean, median and successive pairs of
guantiles are substantial showing that prediction using the mean may underestimate the level of
loss reserves resulting in sufficient fund reserved for future claims. Chan, Choy and Makov [7]
predicted the total outstanding claims in the lower triangle to be 296,159 dollars with a standard
error of 123,867 dollars. Our projected totals using a simple mean regression and 75% quantile
regression are 187,493 dollars and 299,988 dollars respectively, with the latter being similar to
the projected total using the GT model.

4.2 Loss reserves data for Queensland

Again, the parameter estimates are reported in Table 5 and their Cls across quantile levels ¢
are graphed in Figure 11.
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Figure 11: Parameter estimates and their 95% confidence intervals across quantiles for Queensland loss
reserves data.
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Trends of CIs across t are similar to those using Israel loss reserves data but the Cls are more
sharp except for very low quantiles. Now the exposure effect is more significant, indicating that
higher level of exposure is associated with larger claim throughout the lag-quarters. Trends of
regression quantiles in Figure 6(b) again follow the pattern that higher peak occurs at earlier lag-
quarter and lower peak at latter lag-quarter as the quantile level decreases. Table 5 shows that the
median regression and 75% quantile regression are the first and second best models according to
RMSE. While the former model gives an underestimate of total claim in the upper triangle
according to PT but the latter model gives an overestimate of only 11% above the actual total,
the latter model is chosen to forecast future claims for solvency consideration. The model
suggests that 15,040,954,802 dollars should be saved for the future 22 quarters (5.5 years).
Predicted i-period ahead claim totals (i = 1,...,n — 1) using the mean, median and (upper)
guantile regression and their overall totals across quantile levels are reported in Table 7 and
graphed in Figure 10(b). The median and quantile lines show similar decreasing trends as in
Figure 10(a) for Israel data. However the mean regression line crosses over some quantiles
showing that the predicted diagonal totals using the mean regression will not be seriously
underestimated. Again, SWR shows that the 97.5% quantile regression model provides the most
minimization of (1) and Figure 12 which plots the residual distributions among different quantile
regression models shows the change of shape from right-skewed to left-skewed on increasing
guantile level z.
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Figure 12: Residuals in the upper triangle of quantile regression models across quantile levels z for
Queensland loss reserves data.

5. Conclusion

As insurers receive premiums from policyholders in advance to pay for the future claims on
losses specified in insurance contracts in return, they must have the necessary loss reserves to
pay for these outstanding claims and settlement costs incurred. To provide sufficient reserves for
outstanding claims, prediction of over-claimed is more important and hence the focus of loss
reserves model lies more on the upper tails of the conditional distribution of claims. This paper
makes a pioneering attempt to model loss reserves data using quantile regression because it
provides a more complete view of the causal relationships between risk factors and claim levels
in loss reserving. The model is applied to two loss reserves data and results illustrate that the
claim levels in different quantiles show significantly different trend patterns across lag-period
and different sensitivities to initial claim level or exposure.
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Quantile regression model is further demonstrated and compared to the GT model in Chan,
Choy and Makov [7] using an Israel loss reserves data. Results show that quantile regression
model can capture some characteristics in the data that the sophisticated GT model has targeted
for, namely the skewed error distribution due to logarithmic transformation, the shift of trend
pattern for claims after a threshold pol- icy year and the extreme large and small claims. These
characteristics are all allowed for in quantile regression, partly due to its nonparametric nature
which avoids some model assumptions in the parametric mean regression. Forecast of total
claims using a quantile level of z = 0.75 is similar to the forecast using GT model. For practicing
actuaries, the idea of using a sophisticated model is less attractive. This is reflected by the fact
that most actuaries use solely the CL model and rarely attempt any other models. Although the
performance of quantile regression model is less satisfactory than the GT model for in-sample
model-fit, the former model provides a slight overestimate of total claims whereas the latter an
underestimate which is less desirable because it will weaken the solvency for an insurance
company and increase the risk of bankruptcy. Another practical advantage of quantile regression
is that it can be easily implemented using the quantreg package in R. In conclusion, guantile
regression model offers an attractive methodological advancement in forecasting loss reserves.

Acknowledgment

We gratefully acknowledge Professor Udi E. Makov, Department of Statistics, University of
Haifa, Israel and Miss Alice Dong, Insurance Australia Group Limited for kindly providing the
loss reserves data set from Israel and Queensland, Australia respectively to demonstrate the
proposed model in this paper. This research was initiated during the visit to Professor Cathy W.S.
Chen, Graduate Institute of Statistics and Actuarial Science, Feng Chia University, Taiwan.

References

[1] Barnes, M.L. and Hughes, A.W. (2002). A quantile regression analysis of the cross section
of stock Market Returns, No 02-2, Working Papers from Federal Reserve Bank of Boston.

[2] Buchinsky, M. (1994). Changes in the U.S. wage structure 1963-1987: application of
quantile regression, Econometrica 65, 1129-1151.

[3] Buchinsky, M. (1995). Quantile regression box-cox transformation model, and the U.S. wage
structure, 1963-1987, Journal of Econometrics 65, 109-154.

[4] Buchinsky, M. (1998). Recent advances in quantile regression models: a practical guideline
for empirical research, Journal of Human Resources 33, 88-126.

[5] Cade, B.S. and Noon, B.R. (2003). A gentle introduction to quantile regression for ecologists,
Front Ecol. Environ. 1(8), 412-420.



154 Predicting loss reserves using quantile regression Running title: Quantile regression loss reserve models

[6] Cade, B.S., Terrell, JW. and Schroeder, R.L. (1999). Estimating effects of limiting factors
with regression quantiles, Ecology 80, 311-323.

[7] Chan, J.S.K., Choy, S.T.B. and Makov, U.E. (2008). Dynamic and robust models for loss
reserves using generalized-t distribution, ASTIN Bulletin 38, 207-230.

[8] deJong, P.and Heller, G.Z. (2008). Generalized linear models for insurance data, Cambridge
University Press, Cambridge.

[9] Eide, E. and Showalter, M.H. (1998). The effect of school quality on student per- formance:
a quantile regression approach, Economic Letters 58, 345-350.

[10] Engle, R.F. and Manganelli, S. (1999) CAViaR: conditional value at risk by quantile
regression, national bureau of economic research working paper no. 7341.

[11] Gutenbrunner, C., Jureckova, J., Koenker, R. and Portnoy, S. (1993). Tests of lin- ear
hypotheses based on regression rank scores, Journal of Nonparametric Statistics 2, 307-
333.

[12] Klugman, S.A., Panjer, H.H. and Willmot, G.E. (2008). Loss Models: From Data to
Decision, Third edition, John Wiley, Hoboken NJ.

[13] Koenker, R.W. and Basset, G.J. (1978). Regression quantiles, Econometrica 46, 33-50.

[14] Koenker, R.W. and Hallock, K.F. (2001). Quantile regression, Journal of Economic
Perspectives 15, 143-156.

[15] Koenker, R.W. and Machado, J.A.F. (1999). Goodness of fit and related inference processes
for quantile regression, J. Am. Stat. Assoc. 94, 1296-1310.

[16] Koenker, R.W. and Protnoy, S. (1997). The Gaussian Hare and the Laplacean Tortoise:
computability of squared-error vs Absolute Error Estimators, (with discussion), Statistical
Science 12, 279-300.

[17] Koenker, R.W. and D’Orey, V. (1987). Computing regression quantiles, Applied Statistics
36, 383-393.

[18] Koenker, R.W. and D’Orey, V. (1994). A remark on algorithm AS229: Computing dual
regression quantiles and regression rank scores, Applied Statistics 43, 410-414.

[19] Kudryavtsev, A.A. (2009). Using quantile regression for rate-making, Insurance:
Mathematics and Economics 45, 296-304.



Chan, J. S .K. 155

[20] Pitt, D.G.W. (2006). Regression quantile analysis of claim termination rates for income
protection insurance, Annals of Actuarial Science 1(11), 345-357.

[21] Portnoy, E. (1997). Regression-quantile graduation of Australian life tables, 1946- 1992,
Insurance: Mathematics and Economics 21, 163-172.

[22] Taylor, G.C. (2000). Loss Reserving - An Actuarial Perspective Kluwer Academic
Publishers, Norwell, Mass.

Received March 15, 2013; accepted November 10, 2013.

Chan, J.S.K.

Department of Mathematics and Statistics
Sydney University

The University of Sydney, NSW 2006, Australia.
Tel: 612 83514873

jchan@maths.usyd.edu.au



156 Predicting loss reserves using quantile regression Running title: Quantile regression loss reserve models




