Deep neural networks have a wide range of applications in data science. This paper reviews neural network modeling algorithms and their applications in both supervised and unsupervised learning. Key examples include: (i) binary classification and (ii) nonparametric regression function estimation, both implemented with feedforward neural networks ($\mathrm{FNN}$); (iii) sequential data prediction using long short-term memory ($\mathrm{LSTM}$) networks; and (iv) image classification using convolutional neural networks ($\mathrm{CNN}$). All implementations are provided in $\mathrm{MATLAB}$, making these methods accessible to statisticians and data scientists to support learning and practical application.
Abstract: The aim of this paper is to investigate the flexibility of the skewnormal distribution to classify the pixels of a remotely sensed satellite image. In the most of remote sensing packages, for example ENVI and ERDAS, it is assumed that populations are distributed as a multivariate normal. Then linear discriminant function (LDF) or quadratic discriminant function (QDF) is used to classify the pixels, when the covariance matrix of populations are assumed equal or unequal, respectively. However, the data was obtained from the satellite or airplane images suffer from non-normality. In this case, skew-normal discriminant function (SDF) is one of techniques to obtain more accurate image. In this study, we compare the SDF with LDF and QDF using simulation for different scenarios. The results show that ignoring the skewness of the data increases the misclassification probability and consequently we get wrong image. An application is provided to identify the effect of wrong assumptions on the image accuracy.
Abstract: Count data often have excess zeros in many clinical studies. These zeros usually represent “disease-free state”. Although disease (event) free at the time, some of them might be at a high risk of having the putative outcome while others may be at low or no such risk. We postulate these zeros as a one of the two types, either as ‘low risk’ or as ‘high risk’ zeros for the disease process in question. Low risk zeros can arise due to the absence of risk factors for disease initiation/progression and/or due to very early stage of the disease. High risk zeros can arise due to the presence of significant risk factors for disease initiation/ progression or could be, in rare situations, due to misclassification, more specific diagnostic tests, or below the level of detection. We use zero inflated models which allows us to assume that zeros arise from one of the two separate latent processes-one giving low-risk zeros and the other high-risk zeros and subsequently propose a strategy to identify and classify them as such. To illustrate, we use data on the number of involved nodes in breast cancer patients. Of the 1152 patients studied, 38.8% were node- negative (zeros). The model predicted that about a third (11.4%) of negative nodes are “high risk” and the remaining (27.4%) are at “low risk” of nodal positivity. Posterior probability based classification was more appropriate compared to other methods. Our approach indicates that some node negative patients may be re-assessed for their diagnosis about nodal positivity and/or for future clinical management of their disease. The approach developed here is applicable to any scenario where the disease or outcome can be characterized by count-data.
Partial Least Squares Discriminant Analysis (PLSDA) is a statistical method for classification and consists of a classical Partial Least Squares Regression in which the dependent variable is a categorical one expressing the class membership of each observation. The aim of this study is both analyzing the performance of PLSDA method in classifying 28 European Union (EU) member countries and 7 candidate countries (Albania, Montenegro, Serbia, Macedonia FYR, Turkey moreover including potential candidates Bosnia and Herzegovina and Kosova) correctly to their pre-defined classes (candidate or member) and determining the economic and/or demographic indicators, which are effective in classifying, by using the data set obtained from database of the World Bank.
Abstract: Searching for data structure and decision rules using classification and regression tree (CART) methodology is now well established. An alternative procedure, search partition analysis (SPAN), is less well known. Both provide classifiers based on Boolean structures; in CART these are generated by a hierarchical series of local sub-searches and in SPAN by a global search. One issue with CART is its perceived instability, another the awkward nature of the Boolean structures generated by a hierarchical tree. Instability arises because the final tree structure is sensitive to early splits. SPAN, as a global search, seems more likely to render stable partitions. To examine these issues in the context of identifying mothers at risk of giving birth to low birth weight babies, we have taken a very large sample, divided it at random into ten non-overlapping sub-samples and performed SPAN and CART analyses on each sub-sample. The stability of the SPAN and CART models is described and, in addition, the structure of the Boolean representation of classifiers is examined. It is found that SPAN partitions have more intrinsic stability and less prone to Boolean structural irregularities.