Abstract: The five parameter Kumaraswamy generalized gamma model (Pas coa et al., 2011) includes some important distributions as special cases and it is very useful for modeling lifetime data. We propose an extended version of this distribution by assuming that a shape parameter can take negative values. The new distribution can accommodate increasing, decreasing, bath tub and unimodal shaped hazard functions. A second advantage is that it also includes as special models reciprocal distributions such as the recipro cal gamma and reciprocal Weibull distributions. A third advantage is that it can represent the error distribution for the log-Kumaraswamy general ized gamma regression model. We provide a mathematical treatment of the new distribution including explicit expressions for moments, generating function, mean deviations and order statistics. We obtain the moments of the log-transformed distribution. The new regression model can be used more effectively in the analysis of survival data since it includes as sub models several widely-known regression models. The method of maximum likelihood and a Bayesian procedure are used for estimating the model pa rameters for censored data. Overall, the new regression model is very useful to the analysis of real data.
Abstract: In this paper, we introduce a Bayesian analysis for bivariate geometric distributions applied to lifetime data in the presence of covariates, censored data and cure fraction using Markov Chain Monte Carlo (MCMC) methods. We show that the use of a discrete bivariate geometric distribution could bring us some computational advantages when compared to standard existing bivariate exponential lifetime distributions introduced in the literature assuming continuous lifetime data as for example, the exponential Block and Basu bivariate distribution. Posterior summaries of interest are obtained using the popular OpenBUGS software. A numerical illustration is introduced considering a medical data set related to the analysis of a diabetic retinopathy data set.
Abstract: In this paper we propose a new three-parameters lifetime distribu tion with decreasing hazard function, the long-term exponential geometric distribution. The new distribution arises on latent competing risks scenarios, where the lifetime associated with a particular risk is not observable, rather we observe only the minimum lifetime value among all risks, and there is presence of long-term survival. The properties of the proposed distribution are discussed, including its probability density function and explicit algebraic formulas for its survival and hazard functions, order statistics, Bonferroni function and the Lorenz curve. The parameter estimation is based on the usual maximum likelihood approach. We compare the new distribution with its particular case, the long-term exponential distribution, as well as with the long-term Weibull distribution on two real datasets, observing its poten tial and competitiveness in comparison with an usual lifetime distribu
Abstract: In any sport competition, there is a strong interest in knowing which team shall be the champion at the end of the championship. Besides this, the end result of a match, the chance of a team to be qualified for a specific tournament, the chance of being relegated, the best attack, the best defense, among others, are also subject of interest. In this paper we present a simple method with good predictive quality, easy implementation, low computational effort, which allows the calculation of all the interesting quantities above. Following Lee (1997), we estimate the average goals scored by each team by assuming that the number of goals scored by a team in a match follows a univariate Poisson distribution but we consider linear models that express the sum and the difference of goals scored in terms of five covariates: the goal average in a match, the home-team advantage, the team’s offensive power, the opponent team’s defensive power and a crisis indicator. The methodology is applied to the 2008-2009 English Premier League.
Overdispersion is a common phenomenon in Poisson modelling. The generalized Poisson (GP) distribution accommodates both overdispersion and under dispersion in count data. In this paper, we briefly overview different overdispersed and zero-inflated regression models. To study the impact of fitting inaccurate model to data simulated from some other model, we simulate data from ZIGP distribution and fit Poisson, Generalized Poisson (GP), Zero-inflated Poisson (ZIP), Zero-inflated Generalized Poisson (ZIGP) and Zero-inflated Negative Binomial (ZINB) model. We compare the performance of the estimates of Poisson, GP, ZIP, ZIGP and ZINB through mean square error, bias and standard error when the samples are generated from ZIGP distribution. We propose estimators of parameters of ZIGP distribution based on the first two sample moments and proportion of zeros referred to as MOZE estimator and compare its performance with maximum likelihood estimate (MLE) through a simulation study. It is observed that MOZE are almost equal or even more efficient than that of MLE of the parameters of ZIGP distribution.