This paper introduces a new three-parameter distribution called inverse generalized power Weibull distribution. This distribution can be regarded as a reciprocal of the generalized power Weibull distribution. The new distribution is characterized by being a general formula for some well-known distributions, namely inverse Weibull, inverse exponential, inverse Rayleigh and inverse Nadarajah-Haghighi distributions. Some of the mathematical properties of the new distribution including the quantile, density, cumulative distribution functions, moments, moments generating function and order statistics are derived. The model parameters are estimated using the maximum likelihood method. The Monte Carlo simulation study is used to assess the performance of the maximum likelihood estimators in terms of mean squared errors. Two real datasets are used to demonstrate the flexibility of the new distribution as well as to demonstrate its applicability.
The Topp-Leone distribution is an attractive model for life testing and reliability studies as it acquires a bathtub shaped hazard function. In this paper, we introduce a new family of distributions, depending on Topp–Leone random variable as a generator, called the Type II generalized Topp– Leone–G (TIIGTL-G) family. Its density function can be unimodel, leftskewed, right-skewed, and reversed-J shaped, and has increasing, decreasing, upside-down, J and reversed-J hazard rates. Some special models are presented. Some of its statistical properties are studied. Explicit expressions for the ordinary and incomplete moments, quantile and generating functions, Rényi entropy and order statistics are derived. The method of maximum likelihood is used to estimate the model parameters. The importance of one special model; namely; the Type II generalized Topp–Leone exponential is illustrated through two real data sets.
In this article, we introduce an extension referred to as the exponentiated Weibull power function distribution based on the exponentiated Weibull-G family of distributions. The proposed model serves as an extension of the two-parameter power function distribution as well as a generalization to the Weibull power function presented by Tahir et al. (2016 a). Various mathematical properties of the subject distribution are studied. General explicit expressions for the quantile function, expansion of density and distribution functions, moments, generating function, incomplete moments, conditional moments, residual life function, mean deviation, inequality measures, Rényi and q – entropies, probability weighted moments and order statistics are obtained. The estimation of the model parameters is discussed using maximum likelihood method. Finally, the practical importance of the proposed distribution is examined through three real data sets. It has been concluded that the new distribution works better than other competing models.
For the purpose of generalizing or extending an existing probability distribution, incorporation of additional parameter to it is very common in the statistical distribution theory and practice. In fact, in most of the times, such extensions provide better fit to the real life situations compared to the existing ones. In this article, we propose and study a two-parameter probability distribution, called quasi xgamma distribution, as an extension or generalization of xgamma distribution (Sen et al. 2016) for modeling lifetime data. Important distributional properties along with survival characteristics and distributions of order statistics are studied in detail. Method of maximum likelihood and method of moments are proposed and described for parameter estimation. A data generation algorithm is proposed supported by a Monte-Carlo simulation study to describe the mean square errors of estimates for different sample sizes. A bladder cancer survival data is used to illustrate the application and suitability of the proposed distribution as a potential survival model.
Abstract: In this small note we have established some new explicit expressions for ratio and inverse moments of lower generalized order statistics for the Marshall-Olkin extended Burr type XII distribution. These explicit expressions can be used to develop the relationship for moments of ordinary order statistics, record statistics and other ordered random variable techniques. Further, a characterization result of this distribution has been considered on using the conditional moment of the lower generalized order statistics.