In this paper, we introduce a new lifetime model, called the Gen- eralized Weibull-Burr XII distribution. We discuss some of its mathematical properties such as density, hazard rate functions, quantile function and mo- ments. Maximum likelihood method is used to estimate model parameters. A simulation study is performed to assess the performance of maximum like- lihood estimators by means of biases, mean squared errors. Finally, we prove that the proposed distribution is a very competitive model to other classical models by means of application on real data set.
Abstract: In compositional data, an observation is a vector with non-negative components which sum to a constant, typically 1. Data of this type arise in many areas, such as geology, archaeology, biology, economics and political science among others. The goal of this paper is to extend the taxicab metric and a newly suggested metric for com-positional data by employing a power transformation. Both metrics are to be used in the k-nearest neighbours algorithm regardless of the presence of zeros. Examples with real data are exhibited.
The normal distribution is the most popular model in applications to real data. We propose a new extension of this distribution, called the Kummer beta normal distribution, which presents greater flexibility to model scenarios involving skewed data. The new probability density function can be represented as a linear combination of exponentiated normal pdfs. We also propose analytical expressions for some mathematical quantities: Ordinary and incomplete moments, mean deviations and order statistics. The estimation of parameters is approached by the method of maximum likelihood and Bayesian analysis. Likelihood ratio statistics and formal goodnessof-fit tests are used to compare the proposed distribution with some of its sub-models and non-nested models. A real data set is used to illustrate the importance of the proposed model.
In this paper, we introduce some new families of generalized Pareto distributions using the T-R{Y} framework. These families of distributions are named T-Pareto{Y} families, and they arise from the quantile functions of exponential, log-logistic, logistic, extreme value, Cauchy and Weibull distributions. The shapes of these T-Pareto families can be unimodal or bimodal, skewed to the left or skewed to the right with heavy tail. Some general properties of the T-Pareto{Y} family are investigated and these include the moments, modes, mean deviations from the mean and from the median, and Shannon entropy. Several new generalized Pareto distributions are also discussed. Four real data sets from engineering, biomedical and social science are analyzed to demonstrate the flexibility and usefulness of the T-Pareto{Y} families of distributions.
Abstract: The Weibull distribution is the most important distribution for problems in reliability. We study some mathematical properties of the new wider Weibull-G family of distributions. Some special models in the new family are discussed. The properties derived hold to any distribution in this family. We obtain general explicit expressions for the quantile function, or dinary and incomplete moments, generating function and order statistics. We discuss the estimation of the model parameters by maximum likelihood and illustrate the potentiality of the extended family with two applications to real data.