In this article, a new family of lifetime distributions by adding an additional parameter to the existing distributions is introduced. The new family is called, the extended alpha power transformed family of distributions. For the proposed family, explicit expressions for some mathematical properties along with estimation of parameters through Maximum likelihood Method are discussed. A special sub-model, called the extended alpha power transformed Weibull distribution is considered in detail. The proposed model is very flexible and can be used to model data with increasing, decreasing or bathtub shaped hazard rates. To access the behavior of the model parameters, a small simulation study has also been carried out. For the new family, some useful characterizations are also presented. Finally, the potentiality of the proposed method is showen via analyzing two real data sets taken from reliability engineering and bio-medical fields.
Abstract: In recent years, many modifications of the Weibull distribution have been proposed. Some of these modifications have a large number of parameters and so their real benefits over simpler modifications are questionable. Here, we use two data sets with modified unimodal (unimodal followed by increasing) hazard function for comparing the exponentiated Weibull and generalized modified Weibull distributions. We find no evidence that the generalized modified Weibull distribution can provide a better fit than the exponentiated Weibull distribution for data sets exhibiting the modified unimodal hazard function.In a related issue, we consider Carrasco et al. (2008), a widely cited paper, proposing the generalized modified Weibull distribution, and illustrating two real data applications. We point out that some of the results in both real data applications in Carrasco et al. (2008) 1 are incorrect.
Abstract: The Weibull distribution has received much interest in reliability theory. The well-known maximum likelihood estimators (MLE) of this fam ily are not available in closed form expression. In this work, we propose a consistent and closed form estimator for shape parameter of three-parameter Weibull distribution. Apart from high degree of performance, the derived estimator is location and scale-invariant.
Abstract: Chen, Bunce and Jiang [In: Proceedings of the International Con ference on Computational Intelligence and Software Engineering, pp. 1-4] claim to have proposed a new extreme value distribution. But the formulas given for the distribution do not form a valid probability distribution. Here, we correct their formulas to form a valid probability distribution. For this valid distribution, we provide a comprehensive treatment of mathematical properties, estimate parameters by the method of maximum likelihood and provide the observed information matrix. The flexibility of the distribution is illustrated using a real data set.
Abstract: A new family of copulas generated by a univariate distribution function is introduced, relations between this copula and other well-known ones are discussed. The new copula is applied to model the dependence of two real data sets as illustrations.