Abstract: The present article discusses and compares multiple testing procedures (MTPs) for controlling the family wise error rate. Machekano and Hubbard (2006) have proposed empirical Bayes approach that is a resampling based multiple testing procedure asymptotically controlling the familywise error rate. In this paper we provide some additional work on their procedure, and we develop resampling based step-down procedure asymptotically controlling the familywise error rate for testing the families of one-sided hypotheses. We apply these procedures for making successive comparisons between the treatment effects under a simple-order assumption. For example, the treatment means may be a sequences of increasing dose levels of a drug. Using simulations, we demonstrate that the proposed step-down procedure is less conservative than the Machekano and Hubbard’s procedure. The application of the procedure is illustrated with an example.
Abstract: In compositional data, an observation is a vector with non-negative components which sum to a constant, typically 1. Data of this type arise in many areas, such as geology, archaeology, biology, economics and political science among others. The goal of this paper is to extend the taxicab metric and a newly suggested metric for com-positional data by employing a power transformation. Both metrics are to be used in the k-nearest neighbours algorithm regardless of the presence of zeros. Examples with real data are exhibited.
Abstract: The detection of slope change points in wind curves depends on linear curve-fitting. Hall and Titterington’s algorithm based on smoothing is adapted and compared to a Bayesian method of curve-fitting. After prior spline smoothing of the data, the algorithms are tested and the errors between the split-linear fitted wind and the real one are estimated. In our case, the adaptation of the edge-preserving smoothing algorithm gives the same good performance as automatic Bayesian curve-fitting based on a Monte Carlo Markov chain algorithm yet saves computation time.
Compositional data are positive multivariate data, constrained to lie within the simplex space. Regression analysis of such data has been studied and many regression models have been proposed, but most of them not allowing for zero values. Secondly, the case of compositional data being in the predictor variables side has gained little research interest. Surprisingly enough, the case of both the response and predictor variables being compositional data has not been widely studied. This paper suggests a solution for this last problem. Principal components regression using the 𝛼 -transformation and Kulback-Leibler divergence are the key elements of the proposed approach. An advantage of this approach is that zero values are allowed, in both the response and the predictor variables side. Simulation studies and examples with real data illustrate the performance of our algorithm.
The surrogate markers(SM) are the important factor for angiogenesis in cancer patients.In Metronomic Chemotherapy (MC) , physicians administer subtoxic doses of chemotherapy (without break) for long periods, to the target tumor angiogenesis. We propose a semiparametric approach, predictive risk modeling and time to control the level of surrogate marker to detect the perfect dose level of MC. It is based on the controlled level of surrogate marker, and the aim is to detect an Optimum Biological Dose (OBD) finding rather than a traditional Maximum Tolerated Dose (MTD) approach. The methods are illustrated with MC trial dataset to determine the best OBD and we investigate the performance of the model through simulation studies.