Physician performance is critical to caring for patients admitted to the intensive care unit (ICU), who are in life-threatening situations and require high level medical care and interventions. Evaluating physicians is crucial for ensuring a high standard of medical care and fostering continuous performance improvement. The non-randomized nature of ICU data often results in imbalance in patient covariates across physician groups, making direct comparisons of the patients’ survival probabilities for each physician misleading. In this article, we utilize the propensity weighting method to address confounding, achieve covariates balance, and assess physician effects. Due to possible model misspecification, we compare the performance of the propensity weighting methods using both parametric models and super learning methods. When the generalized propensity or the quality function is not correctly specified within the parametric propensity weighting framework, super learning-based propensity weighting methods yield more efficient estimators. We demonstrate that utilizing propensity weighting offers an effective way to assess physician performance, a topic of considerable interest to hospital administrators.
Abstract: The concept of frailty provides a suitable way to introduce random effects in the model to account for association and unobserved heterogeneity. In its simplest form, a frailty is an unobserved random factor that modifies multiplicatively the hazard function of an individual or a group or cluster of individuals. In this paper, we study positive stable distribution as frailty distribution and two different baseline distributions namely Pareto and linear failure rate distribution. We estimate parameters of proposed models by introducing Bayesian estimation procedure using Markov Chain Monte Carlo (MCMC) technique. In the present study a simulation is done to compare the true values of parameters with the estimated value. We try to fit the proposed models to a real life bivariate survival data set of McGrilchrist and Aisbett (1991) related to kidney infection. Also, we present a comparison study for the same data by using model selection criterion, and suggest a better model.
Abstract: While conducting a social survey on stigmatized/sensitive traits, obtaining efficient (truthful) data is an intricate issue and estimates are generally biased in such surveys. To obtain trustworthy data and to reduce false response bias, a technique, known as randomized response technique, is now being used in many surveys. In this study, we performed a Bayesian analysis of a general class of randomized response models. Suitable simple Beta prior and mixture of Beta priors are used in a common prior structure to obtain the Bayes estimates for the proportion of a stigmatized/sensitive attributes in the population of interest. We also extended our proposal to stratified random sampling. The Bayes and the maximum likelihood estimators are compared. For further understanding of variability, we have also compared the prior and posterior distributions for different values of the design constants through graphs and credible intervals. The condition to develop a new randomized response model is also discussed.
In this work, we study the odd Lindley Burr XII model initially introduced by Silva et al. [29]. This model has the advantage of being capable of modeling various shapes of aging and failure criteria. Some of its statistical structural properties including ordinary and incomplete moments, quantile and generating function and order statistics are derived. The odd Lindley Burr XII density can be expressed as a simple linear mixture of BurrXII densities. Useful characterizations are presented. The maximum likelihood method is used to estimate the model parameters. Simulation results to assess the performance of the maximum likelihood estimators are discussed. We prove empirically the importance and flexibility of the new model in modeling various types of data. Bayesian estimation is performed by obtaining the posterior marginal distributions as well as using the simulation method of Markov Chain Monte Carlo (MCMC) by the Metropolis-Hastings algorithm in each step of Gibbs algorithm. The trace plots and estimated conditional posterior distributions are also presented.
Abstract: We study a new five-parameter model called the extended Dagum distribution. The proposed model contains as special cases the log-logistic and Burr III distributions, among others. We derive the moments, generating and quantile functions, mean deviations and Bonferroni, Lorenz and Zenga curves. We obtain the density function of the order statistics. The parameters are estimated by the method of maximum likelihood. The observed information matrix is determined. An application to real data illustrates the importance of the new model.