In this paper a new two-parameter distribution is proposed. This new model provides more flexibility to modeling data with increasing and bathtub hazard rate function. Several statistical and reliability properties of the proposed model are also presented in this paper, such as moments, moment generating function, order statistics and stress-strength reliability. The maximum likelihood estimators for the parameters are discussed as well as a bias corrective approach based on bootstrap techniques. A numerical simulation is carried out to examine the bias and the mean square error of the proposed estimators. Finally, an application using a real data set is presented to illustrate our model.
Analyzing time to event data arises in a number of fields such as Biology and Engineering. A common feature of this data is that, the exact failure time for all units may not be observable. Accordingly, several types of censoring were presented. Progressive censoring allows units to be randomly removed before the terminal point of the experiment. Marshall-Olkin bivariate lifetime distribution was first introduced in 1967 using the exponential distribution. Recently, bivariate Marshall-Olkin Kumaraswamy lifetime distribution was derived. This paper derives the likelihood function under progressive type-I censoring for the bivariate Marshall-Olkin family in general and applies it on the bivariate Kumaraswamy lifetime distribution. Maximum likelihood estimators of model parameters were derived. Simulation study and a real data set are presented to illustrate the proposed procedure. Absolute bias, mean square error, asymptotic confidence intervals, confidence width and coverage probability are obtained. Simulation results indicate that the mean square error is smaller and confidence width is narrower and more precise when number of removals gets smaller. Also, increasing the terminal point of the experiment results in reducing the mean square error and confidence width.
Abstract: In recent years, many modifications of the Weibull distribution have been proposed. Some of these modifications have a large number of parameters and so their real benefits over simpler modifications are questionable. Here, we use two data sets with modified unimodal (unimodal followed by increasing) hazard function for comparing the exponentiated Weibull and generalized modified Weibull distributions. We find no evidence that the generalized modified Weibull distribution can provide a better fit than the exponentiated Weibull distribution for data sets exhibiting the modified unimodal hazard function.In a related issue, we consider Carrasco et al. (2008), a widely cited paper, proposing the generalized modified Weibull distribution, and illustrating two real data applications. We point out that some of the results in both real data applications in Carrasco et al. (2008) 1 are incorrect.
In this article, the maximum likelihood estimators of the k independent exponential populations parameters are obtained based on joint progressive type- I censored (JPC-I) scheme. The Bayes estimators are also obtained by considering three different loss functions. The approximate confidence, two Bootstrap confidence and the Bayes credible intervals for the unknown parameters are discussed. A simulated and real data sets are analyzed to illustrate the theoretical results.
Abstract: : In this paper, we discussed classical and Bayes estimation procedures for estimating the unknown parameters as well as the reliability and hazard functions of the flexible Weibull distribution when observed data are collected under progressively Type-II censoring scheme. The performances of the maximum likelihood and Bayes estimators are compared in terms of their mean squared errors through the simulation study. For the computation of Bayes estimates, we proposed the use of Lindley’s approximation and Markov Chain Monte Carlo (MCMC) techniques since the posteriors of the parameters are not analytically tractable. Further, we also derived the one and two sample posterior predictive densities of future samples and obtained the predictive bounds for future observations using MCMC techniques. To illustrate the discussed procedures, a set of real data is analysed.