Statistical learning methods have been growing in popularity in recent years. Many of these procedures have parameters that must be tuned for models to perform well. Research has been extensive in neural networks, but not for many other learning methods. We looked at the behavior of tuning parameters for support vector machines, gradient boosting machines, and adaboost in both a classification and regression setting. We used grid search to identify ranges of tuning parameters where good models can be found across many different datasets. We then explored different optimization algorithms to select a model across the tuning parameter space. Models selected by the optimization algorithm were compared to the best models obtained through grid search to select well performing algorithms. This information was used to create an R package, EZtune, that automatically tunes support vector machines and boosted trees.
Abstract: We introduce a new class of continuous distributions called the Ku maraswamy transmuted-G family which extends the transmuted class defined by Shaw and Buckley (2007). Some special models of the new family are provided. Some of its mathematical properties including explicit expressions for the ordinary and incomplete moments, generating function, Rényi and Shannon entropies, order statistics and probability weighted moments are derived. The maximum likelihood is used for estimating the model parameters. The flexibility of the generated family is illustrated by means of two applications to real data sets.
Abstract: We introduce a new class of the slash distribution using folded normal distribution. The proposed model defined on non-negative measure ments extends the slashed half normal distribution and has higher kurtosis than the ordinary half normal distribution. We study the characterization and properties involving moments and some measures based on moments of this distribution. Finally, we illustrate the proposed model with a simulation study and a real application.
Abstract: The generalized gamma model has been used in several applied areas such as engineering, economics and survival analysis. We provide an extension of this model called the transmuted generalized gamma distribution, which includes as special cases some lifetime distributions. The proposed density function can be represented as a mixture of generalized gamma densities. Some mathematical properties of the new model such as the moments, generating function, mean deviations and Bonferroni and Lorenz curves are provided. We estimate the model parameters using maximum likelihood. We prove that the proposed distribution can be a competitive model in lifetime applications by means of a real data set.
Abstract: The problem of variable selection is fundamental to statistical modelling in diverse fields of sciences. In this paper, we study in particular the problem of selecting important variables in regression problems in the case where observations and labels of a real-world dataset are available. At first, we examine the performance of several existing statistical methods for analyzing a real large trauma dataset which consists of 7000 observations and 70 factors, that include demographic, transport and intrahospital data. The statistical methods employed in this work are the nonconcave penalized likelihood methods (SCAD, LASSO, and Hard), the generalized linear logis tic regression, and the best subset variable selection (with AIC and BIC), used to detect possible risk factors of death. Supersaturated designs (SSDs) are a large class of factorial designs which can be used for screening out the important factors from a large set of potentially active variables. This paper presents a new variable selection approach inspired by supersaturated designs given a dataset of observations. The merits and the effectiveness of this approach for identifying important variables in observational studies are evaluated by considering several two-levels supersaturated designs, and a variety of different statistical models with respect to the combinations of factors and the number of observations. The derived results are encour aging since the alternative approach using supersaturated designs provided specific information that are logical and consistent with the medical experi ence, which may also assist as guidelines for trauma management.