Abstract: The development and application of computational data mining techniques in financial fraud detection and business failure prediction has become a popular cross-disciplinary research area in recent times involving financial economists, forensic accountants and computational modellers. Some of the computational techniques popularly used in the context of financial fraud detection and business failure prediction can also be effectively applied in the detection of fraudulent insurance claims and therefore, can be of immense practical value to the insurance industry. We provide a comparative analysis of prediction performance of a battery of data mining techniques using real-life automotive insurance fraud data. While the data we have used in our paper is US-based, the computational techniques we have tested can be adapted and generally applied to detect similar insurance frauds in other countries as well where an organized automotive insurance industry exists.
Law and legal studies has been an exciting new field for data science applications whereas the technological advancement also has profound implications for legal practice. For example, the legal industry has accumulated a rich body of high quality texts, images and other digitised formats, which are ready to be further processed and analysed by data scientists. On the other hand, the increasing popularity of data science has been a genuine challenge to legal practitioners, regulators and even general public and has motivated a long-lasting debate in the academia focusing on issues such as privacy protection and algorithmic discrimination. This paper collects 1236 journal articles involving both law and data science from the platform Web of Science to understand the patterns and trends of this interdisciplinary research field in terms of English journal publications. We find a clear trend of increasing publication volume over time and a strong presence of high-impact law and political science journals. We then use the Latent Dirichlet Allocation (LDA) as a topic modelling method to classify the abstracts into four topics based on the coherence measure. The four topics identified confirm that both challenges and opportunities have been investigated in this interdisciplinary field and help offer directions for future research.