Abstract: The assumption that is usually made when modeling count data is that the response variable, which is the count, is correctly reported. Some counts might be over- or under-reported. We derive the Generalized PoissonPoisson mixture regression (GPPMR) model that can handle accurate, underreported and overreported counts. The parameters in the model will be estimated via the maximum likelihood method. We apply the GPPMR model to a real-life data set.
Abstract: In compositional data, an observation is a vector with non-negative components which sum to a constant, typically 1. Data of this type arise in many areas, such as geology, archaeology, biology, economics and political science among others. The goal of this paper is to extend the taxicab metric and a newly suggested metric for com-positional data by employing a power transformation. Both metrics are to be used in the k-nearest neighbours algorithm regardless of the presence of zeros. Examples with real data are exhibited.
Compositional data consist of known compositions vectors whose components are positive and defined in the interval (0,1) representing proportions or fractions of a “whole”. The sum of these components must be equal to one. Compositional data is present in different knowledge areas, as in geology, economy, medicine among many others. In this paper, we propose a new statistical tool for volleyball data, i.e., we introduce a Bayesian anal- ysis for compositional regression applying additive log-ratio (ALR) trans- formation and assuming uncorrelated and correlated errors. The Bayesian inference procedure based on Markov Chain Monte Carlo Methods (MCMC). The methodology is applied on an artificial and a real data set of volleyball.