Pub. online:25 Jan 2023Type:Statistical Data ScienceOpen Access
Journal:Journal of Data Science
Volume 21, Issue 2 (2023): Special Issue: Symposium Data Science and Statistics 2022, pp. 368–390
Abstract
The potential weight of accumulated snow on the roof of a structure has long been an important consideration in structure design. However, the historical approach of modeling the weight of snow on structures is incompatible for structures with surfaces and geometry where snow is expected to slide off of the structure, such as standalone solar panels. This paper proposes a “storm-level” adaptation of previous structure-related snow studies that is designed to estimate short-term, rather than season-long, accumulations of the snow water equivalent or snow load. One key development associated with this paper includes a climate-driven random forests model to impute missing snow water equivalent values at stations that measure only snow depth in order to produce continuous snow load records. Additionally, the paper compares six different approaches of extreme value estimation on short-term snow accumulations. The results of this study indicate that, when considering the 50-year mean recurrence interval (MRI) for short-term snow accumulations across different weather station types, the traditional block maxima approach, the mean-adjusted quantile method with a gamma distribution approach, and the peak over threshold Bayesian approach tend to most often provide MRI estimates near the median of all six approaches considered in this study. Further, this paper also shows, via bootstrap simulation, that the peak over threshold extreme value estimation using automatic threshold selection approaches tend to have higher variance compared to the other approaches considered. The results suggest that there is no one-size-fits-all option for extreme value estimation of short-term snow accumulations, but highlights the potential value from integrating multiple extreme value estimation approaches.
In this work, we introduce a new distribution for modeling the extreme values. Some important mathematical properties of the new model are derived. We assess the performance of the maximum likelihood method in terms of biases and mean squared errors by means of a simulation study. The new model is better than some other important competitive models in modeling the repair times data and the breaking stress data.
Abstract: Response variables that are scored as counts, for example, number of mastitis cases in dairy cattle, often arise in quantitative genetic analysis. When the number of zeros exceeds the amount expected such as under the Poisson density, the zero-inflated Poisson (ZIP) model is more appropriate. In using the ZIP model in animal breeding studies, it is necessary to accommodate genetic and environmental covariances. For that, this study proposes to model the mixture and Poisson parameters hierarchically, each as a function of two random effects, representing the genetic and environmental sources of variability, respectively. The genetic random effects are allowed to be correlated, leading to a correlation within and between clusters. The environmental effects are introduced by independent residual terms, accounting for overdispersion above that caused by extra-zeros. In addition, an inter correlation structure between random genetic effects affecting mixture and Poisson parameters is used to infer pleiotropy, an expression of the extent to which these parameters are influenced by common genes. The methods described here are illustrated with data on number of mastitis cases from Norwegian Red cows. Bayesian analysis yields posterior distributions useful for studying environmental and genetic variability, as well as genetic correlation.
Abstract: Count data often have excess zeros in many clinical studies. These zeros usually represent “disease-free state”. Although disease (event) free at the time, some of them might be at a high risk of having the putative outcome while others may be at low or no such risk. We postulate these zeros as a one of the two types, either as ‘low risk’ or as ‘high risk’ zeros for the disease process in question. Low risk zeros can arise due to the absence of risk factors for disease initiation/progression and/or due to very early stage of the disease. High risk zeros can arise due to the presence of significant risk factors for disease initiation/ progression or could be, in rare situations, due to misclassification, more specific diagnostic tests, or below the level of detection. We use zero inflated models which allows us to assume that zeros arise from one of the two separate latent processes-one giving low-risk zeros and the other high-risk zeros and subsequently propose a strategy to identify and classify them as such. To illustrate, we use data on the number of involved nodes in breast cancer patients. Of the 1152 patients studied, 38.8% were node- negative (zeros). The model predicted that about a third (11.4%) of negative nodes are “high risk” and the remaining (27.4%) are at “low risk” of nodal positivity. Posterior probability based classification was more appropriate compared to other methods. Our approach indicates that some node negative patients may be re-assessed for their diagnosis about nodal positivity and/or for future clinical management of their disease. The approach developed here is applicable to any scenario where the disease or outcome can be characterized by count-data.
Pub. online:29 Dec 2021Type:Statistical Data ScienceOpen Access
Journal:Journal of Data Science
Volume 20, Issue 3 (2022): Special Issue: Data Science Meets Social Sciences, pp. 325–337
Abstract
We propose a method of spatial prediction using count data that can be reasonably modeled assuming the Conway-Maxwell Poisson distribution (COM-Poisson). The COM-Poisson model is a two parameter generalization of the Poisson distribution that allows for the flexibility needed to model count data that are either over or under-dispersed. The computationally limiting factor of the COM-Poisson distribution is that the likelihood function contains multiple intractable normalizing constants and is not always feasible when using Markov Chain Monte Carlo (MCMC) techniques. Thus, we develop a prior distribution of the parameters associated with the COM-Poisson that avoids the intractable normalizing constant. Also, allowing for spatial random effects induces additional variability that makes it unclear if a spatially correlated Conway-Maxwell Poisson random variable is over or under-dispersed. We propose a computationally efficient hierarchical Bayesian model that addresses these issues. In particular, in our model, the parameters associated with the COM-Poisson do not include spatial random effects (leading to additional variability that changes the dispersion properties of the data), and are then spatially smoothed in subsequent levels of the Bayesian hierarchical model. Furthermore, the spatially smoothed parameters have a simple regression interpretation that facilitates computation. We demonstrate the applicability of our approach using simulated examples, and a motivating application using 2016 US presidential election voting data in the state of Florida obtained from the Florida Division of Elections.