Pub. online:8 Aug 2024Type:Statistical Data ScienceOpen Access
Journal:Journal of Data Science
Volume 22, Issue 3 (2024): Special issue: The Government Advances in Statistical Programming (GASP) 2023 conference, pp. 436–455
Abstract
The presence of outliers in a dataset can substantially bias the results of statistical analyses. In general, micro edits are often performed manually on all records to correct for outliers. A set of constraints and decision rules is used to simplify the editing process. However, agricultural data collected through repeated surveys are characterized by complex relationships that make revision and vetting challenging. Therefore, maintaining high data-quality standards is not sustainable in short timeframes. The United States Department of Agriculture’s (USDA’s) National Agricultural Statistics Service (NASS) has partially automated its editing process to improve the accuracy of final estimates. NASS has investigated several methods to modernize its anomaly detection system because simple decision rules may not detect anomalies that break linear relationships. In this article, a computationally efficient method that identifies format-inconsistent, historical, tail, and relational anomalies at the data-entry level is introduced. Four separate scores (i.e., one for each anomaly type) are computed for all nonmissing values in a dataset. A distribution-free method motivated by the Bienaymé-Chebyshev’s inequality is used for scoring the data entries. Fuzzy logic is then considered for combining four individual scores into one final score to determine the outliers. The performance of the proposed approach is illustrated with an application to NASS survey data.
The United States has a racial homeownership gap due to a legacy of historic inequality and discriminatory policies, but factors that contribute to the racial disparity in homeownership rates between White Americans and people of color have not been fully characterized. In order to alleviate this issue, policymakers need a better understanding of how risk factors affect the homeownership rates of racial and ethnic groups differently. In this study, data from several publicly available surveys, including the American Community Survey and United States Census, were leveraged in combination with statistical learning models to investigate potential factors related to homeownership rates across racial and ethnic categories, with a focus on how risk factors vary by race or ethnicity. Our models indicated that job availability for specific demographics, and specific regions of the United States were factors that affect homeownership rates in Black, Hispanic, and Asian populations in different ways. Based on the results of this study, it is recommended policymakers promote strategies to increase access to jobs for people of color (POC), such as vocational training and programs to reduce implicit bias in hiring practices. These interventions could ultimately increase homeownership rates for POC and be a step toward reducing the racial wealth gap.
Pub. online:21 Dec 2022Type:Data Science In ActionOpen Access
Journal:Journal of Data Science
Volume 21, Issue 2 (2023): Special Issue: Symposium Data Science and Statistics 2022, pp. 239–254
Abstract
The 2020 Census County Assessment Tool was developed to assist decennial census data users in identifying deviations between expected census counts and the released counts across population and housing indicators. The tool also offers contextual data for each county on factors which could have contributed to census collection issues, such as self-response rates and COVID-19 infection rates. The tool compiles this information into a downloadable report and includes additional local data sources relevant to the data collection process and experts to seek more assistance.