Editorial: Advances in Network Data Science
Volume 21, Issue 3 (2023): Special Issue: Advances in Network Data Science, pp. 443–445
Pub. online: 8 August 2023
Type: Editorial
Open Access
Published
8 August 2023
8 August 2023
References
Chen EY, Chen R (2023). Modeling dynamic transport network with matrix factor models: An application to international trade flow. Journal of Data Science, 21(3): 490–507. https://doi.org/10.6339/22-JDS1065
Frazier A, Silva J, Meilak R, Sahoo I, Broda M, Chan D (2023). Decision tree-based predictive models for academic achievement using college students’ support networks. Journal of Data Science, 21(3): 557–577. https://doi.org/10.6339/21-JDS1033
Komolafe T, Fong A, Sengupta S (2023). Scalable community extraction of text networks for automated grouping in medical databases. Journal of Data Science, 21(3): 470–489. https://doi.org/10.6339/22-JDS1038
O’Malley AJ, Ran X, An C, Rockmore DN (2023). Optimal physician shared-patient networks and the diffusion of medical technologies. Journal of Data Science, 21(3): 578–598. https://doi.org/10.6339/22-JDS1064
Ouyang G, Dey DK, Zhang P (2023). A mixed-membership model for social network clustering. Journal of Data Science, 21(3): 508–522. https://doi.org/10.6339/23-JDS1109
Shang H, Shi X, Jiang B (2023). Network A/B testing: Nonparametric statistical significance test based on cluster-level permutation. Journal of Data Science, 21(3): 523–537. https://doi.org/10.6339/23-JDS1112
Wang T, Resnick SI (2023). Common growth patterns for regional social networks: A point process approach. Journal of Data Science, 21(3): 446–469. https://doi.org/10.6339/21-JDS1021
Xu Z, Hai J, Zhang Z YY (2023). Comparison of methods for imputing social network data. Journal of Data Science, 21(3): 599–618. https://doi.org/10.6339/22-JDS1045
Yuan Y, Wang T, Yan J, Zhang P (2023). Generating general preferential attachment networks with R package wdnet. Journal of Data Science, 21(3): 538–556. https://doi.org/10.6339/23-JDS1110