Detecting illicit transactions in Anti-Money Laundering (AML) systems remains a significant challenge due to class imbalances and the complexity of financial networks. This study introduces the Multiple Aggregations for Graph Isomorphism Network with Custom Edges (MAGIC) convolution, an enhancement of the Graph Isomorphism Network (GIN) designed to improve the detection of illicit transactions in AML systems. MAGIC integrates edge convolution (GINE Conv) and multiple learnable aggregations, allowing for varied embedding sizes and increased generalization capabilities. Experiments were conducted using synthetic datasets, which simulate real-world transactions, following the experimental setup of previous studies to ensure comparability. MAGIC, when combined with XGBoost as a link predictor, outperformed existing models in 16 out of 24 metrics, with notable improvements in F1 scores and precision. In the most imbalanced dataset, MAGIC achieved an F1 score of 82.6% and a precision of 90.4% for the illicit class. While MAGIC demonstrated high precision, its recall was lower or comparable to the other models, indicating potential areas for future enhancement. Overall, MAGIC presents a robust approach to AML detection, particularly in scenarios where precision and overall quality are critical. Future research should focus on optimizing the model’s recall, potentially by incorporating additional regularization techniques or advanced sampling methods. Additionally, exploring the integration of foundation models like GraphAny could further enhance the model’s applicability in diverse AML environments.
Extensive literature has been proposed for the analysis of correlated survival data. Subjects within a cluster share some common characteristics, e.g., genetic and environmental factors, so their time-to-event outcomes are correlated. The frailty model under proportional hazards assumption has been widely applied for the analysis of clustered survival outcomes. However, the prediction performance of this method can be less satisfactory when the risk factors have complicated effects, e.g., nonlinear and interactive. To deal with these issues, we propose a neural network frailty Cox model that replaces the linear risk function with the output of a feed-forward neural network. The estimation is based on quasi-likelihood using Laplace approximation. A simulation study suggests that the proposed method has the best performance compared with existing methods. The method is applied to the clustered time-to-failure prediction within the kidney transplantation facility using the national kidney transplant registry data from the U.S. Organ Procurement and Transplantation Network. All computer programs are available at https://github.com/rivenzhou/deep_learning_clustered.
Pub. online:14 Mar 2023Type:Statistical Data ScienceOpen Access
Journal:Journal of Data Science
Volume 21, Issue 2 (2023): Special Issue: Symposium Data Science and Statistics 2022, pp. 354–367
Abstract
We propose a scalable Bayesian network learning algorithm based on sparse Cholesky decomposition. Our approach only requires observational data and user-specified confidence level as inputs and can estimate networks with thousands of variables. The computational complexity of the proposed method is $O({p^{3}})$ for a graph with p vertices. Extensive numerical experiments illustrate the usefulness of our method with promising results. In simulation, the initial step in our approach also improves an alternative Bayesian network structure estimation method that uses an undirected graph as an input.
A graphical tool for choosing the number of nodes for a neural network is introduced. The idea is to fit the neural network with a range of numbers of nodes at first, and then generate a jump plot using a transformation of the mean square errors of the resulting residuals. A theorem is proven to show that the jump plot will select several candidate numbers of nodes among which one is the true number of nodes. Then a single node only test, which has been theoretically justified, is used to rule out erroneous candidates. The method has a sound theoretical background, yields good results on simulated datasets, and shows wide applicability to datasets from real research.
With multiple components and relations, financial data are often presented as graph data, since it could represent both the individual features and the complicated relations. Due to the complexity and volatility of the financial market, the graph constructed on the financial data is often heterogeneous or time-varying, which imposes challenges on modeling technology. Among the graph modeling technologies, graph neural network (GNN) models are able to handle the complex graph structure and achieve great performance and thus could be used to solve financial tasks. In this work, we provide a comprehensive review of GNN models in recent financial context. We first categorize the commonly-used financial graphs and summarize the feature processing step for each node. Then we summarize the GNN methodology for each graph type, application in each area, and propose some potential research areas.