Social determinants of health (SDOH) are the conditions in which people are born, grow, work, and live. Although evidence suggests that SDOH influence a range of health outcomes, health systems lack the infrastructure to access and act upon this information. The purpose of this manuscript is to explain the methodology that a health system used to: 1) identify and integrate publicly available SDOH data into the health systems’ Data Warehouse, 2) integrate a HIPAA compliant geocoding software (via DeGAUSS), and 3) visualize data to inform SDOH projects (via Tableau). First, authors engaged key stakeholders across the health system to convey the implications of SDOH data for our patient population and identify variables of interest. As a result, fourteen publicly available data sets, accounting for >30,800 variables representing national, state, county, and census tract information over 2016–2019, were cleaned and integrated into our Data Warehouse. To pilot the data visualization, we created county and census tract level maps for our service areas and plotted common SDOH metrics (e.g., income, education, insurance status, etc.). This practical, methodological integration of SDOH data at a large health system demonstrated feasibility. Ultimately, we will repeat this process system wide to further understand the risk burden in our patient population and improve our prediction models – allowing us to become better partners with our community.
Abstract: Despite the availability of software for interactive graphics, current survey processing systems make limited use of this modern tool. Interactive graphics offer insights, which are difficult to obtain with traditional statis tical tools. This paper shows the use of interactive graphics for analysing survey data. Using Labour Force Survey data from Pakistan, we describe how plotting data in different ways and using interactive tools enables analysts to obtain information from the dataset that would normally not be possible using standard statistical methods. It is also shown that interacative graphics can help the analyst to improve data quality by identifying erroneous cases.