Abstract: support vector machines (SVMs) constitute one of the most popular and powerful classification methods. However, SVMs can be limited in their performance on highly imbalanced datasets. A classifier which has been trained on an imbalanced dataset can produce a biased model towards the majority class and result in high misclassification rate for minority class. For many applications, especially for medical diagnosis, it is of high importance to accurately distinguish false negative from false positive results. The purpose of this study is to successfully evaluate the performance of a classifier, keeping the correct balance between sensitivity and specificity, in order to enable the success of trauma outcome prediction. We compare the standard (or classic) SVM (C SVM) with resampling methods and a cost sensitive method, called Two Cost SVM (TC SVM), which constitute widely accepted strategies for imbalanced datasets and the derived results were discussed in terms of the sensitivity analysis and receiver operating characteristic (ROC) curves.
Ensemble techniques have been gaining strength among machine learning models, considering supervised tasks, due to their great predictive capacity when compared with some traditional approaches. The random forest is considered to be one of the off-the-shelf algorithms due to its flexibility and robust performance to both regression and classification tasks. In this paper, the random machines method is applied over simulated data sets and benchmarking datasets in order to be compared with the consolidated random forest models. The results from simulated models show that the random machines method has a better predictive performance than random forest in most of the investigated data sets. Three real data situations demonstrate that the random machines may be used to solve real-world problems with competitive payoff.
Improvement of statistical learning models to increase efficiency in solving classification or regression problems is a goal pursued by the scientific community. Particularly, the support vector machine model has become one of the most successful algorithms for this task. Despite the strong predictive capacity from the support vector approach, its performance relies on the selection of hyperparameters of the model, such as the kernel function that will be used. The traditional procedures to decide which kernel function will be used are computationally expensive, in general, becoming infeasible for certain datasets. In this paper, we proposed a novel framework to deal with the kernel function selection called Random Machines. The results improved accuracy and reduced computational time, evaluated over simulation scenarios, and real-data benchmarking.