Detecting illicit transactions in Anti-Money Laundering (AML) systems remains a significant challenge due to class imbalances and the complexity of financial networks. This study introduces the Multiple Aggregations for Graph Isomorphism Network with Custom Edges (MAGIC) convolution, an enhancement of the Graph Isomorphism Network (GIN) designed to improve the detection of illicit transactions in AML systems. MAGIC integrates edge convolution (GINE Conv) and multiple learnable aggregations, allowing for varied embedding sizes and increased generalization capabilities. Experiments were conducted using synthetic datasets, which simulate real-world transactions, following the experimental setup of previous studies to ensure comparability. MAGIC, when combined with XGBoost as a link predictor, outperformed existing models in 16 out of 24 metrics, with notable improvements in F1 scores and precision. In the most imbalanced dataset, MAGIC achieved an F1 score of 82.6% and a precision of 90.4% for the illicit class. While MAGIC demonstrated high precision, its recall was lower or comparable to the other models, indicating potential areas for future enhancement. Overall, MAGIC presents a robust approach to AML detection, particularly in scenarios where precision and overall quality are critical. Future research should focus on optimizing the model’s recall, potentially by incorporating additional regularization techniques or advanced sampling methods. Additionally, exploring the integration of foundation models like GraphAny could further enhance the model’s applicability in diverse AML environments.
Extensive literature has been proposed for the analysis of correlated survival data. Subjects within a cluster share some common characteristics, e.g., genetic and environmental factors, so their time-to-event outcomes are correlated. The frailty model under proportional hazards assumption has been widely applied for the analysis of clustered survival outcomes. However, the prediction performance of this method can be less satisfactory when the risk factors have complicated effects, e.g., nonlinear and interactive. To deal with these issues, we propose a neural network frailty Cox model that replaces the linear risk function with the output of a feed-forward neural network. The estimation is based on quasi-likelihood using Laplace approximation. A simulation study suggests that the proposed method has the best performance compared with existing methods. The method is applied to the clustered time-to-failure prediction within the kidney transplantation facility using the national kidney transplant registry data from the U.S. Organ Procurement and Transplantation Network. All computer programs are available at https://github.com/rivenzhou/deep_learning_clustered.
The Birnbaum-Saunders generalized t (BSGT) distribution is a very flflexible family of distributions that admits different degrees of skewness and kurtosis and includes some important special or limiting cases available in the literature, such as the Birnbaum-Saunders and BirnbaumSaunders t distributions. In this paper we provide a regression type model to the BSGT distribution based on the generalized additive models for location, scale and shape (GAMLSS) framework. The resulting model has high flflexibility and therefore a great potential to model the distribution parameters of response variables that present light or heavy tails, i.e. platykurtic or leptokurtic shapes, as functions of explanatory variables. For different parameter settings, some simulations are performed to investigate the behavior of the estimators. The potentiality of the new regression model is illustrated by means of a real motor vehicle insurance data set.
Machine learning methods are increasingly applied for medical data analysis to reduce human efforts and improve our understanding of disease propagation. When the data is complicated and unstructured, shallow learning methods may not be suitable or feasible. Deep learning neural networks like multilayer perceptron (MLP) and convolutional neural network (CNN), have been incorporated in medical diagnosis and prognosis for better health care practice. For a binary outcome, these learning methods directly output predicted probabilities for patient’s health condition. Investigators still need to consider appropriate decision threshold to split the predicted probabilities into positive and negative regions. We review methods to select the cut-off values, including the relatively automatic methods based on optimization of the ROC curve criteria and also the utility-based methods with a net benefit curve. In particular, decision curve analysis (DCA) is now acknowledged in medical studies as a good complement to the ROC analysis for the purpose of decision making. In this paper, we provide the R code to illustrate how to perform the statistical learning methods, select decision threshold to yield the binary prediction and evaluate the accuracy of the resulting classification. This article will help medical decision makers to understand different classification methods and use them in real world scenario.
There has been increasing interest in modeling survival data using deep learning methods in medical research. In this paper, we proposed a Bayesian hierarchical deep neural networks model for modeling and prediction of survival data. Compared with previously studied methods, the new proposal can provide not only point estimate of survival probability but also quantification of the corresponding uncertainty, which can be of crucial importance in predictive modeling and subsequent decision making. The favorable statistical properties of point and uncertainty estimates were demonstrated by simulation studies and real data analysis. The Python code implementing the proposed approach was provided.