Pub. online:8 Nov 2022Type:Statistical Data ScienceOpen Access
Journal:Journal of Data Science
Volume 20, Issue 4 (2022): Special Issue: Large-Scale Spatial Data Science, pp. 439–460
Abstract
In the last few decades, the size of spatial and spatio-temporal datasets in many research areas has rapidly increased with the development of data collection technologies. As a result, classical statistical methods in spatial statistics are facing computational challenges. For example, the kriging predictor in geostatistics becomes prohibitive on traditional hardware architectures for large datasets as it requires high computing power and memory footprint when dealing with large dense matrix operations. Over the years, various approximation methods have been proposed to address such computational issues, however, the community lacks a holistic process to assess their approximation efficiency. To provide a fair assessment, in 2021, we organized the first competition on spatial statistics for large datasets, generated by our ExaGeoStat software, and asked participants to report the results of estimation and prediction. Thanks to its widely acknowledged success and at the request of many participants, we organized the second competition in 2022 focusing on predictions for more complex spatial and spatio-temporal processes, including univariate nonstationary spatial processes, univariate stationary space-time processes, and bivariate stationary spatial processes. In this paper, we describe in detail the data generation procedure and make the valuable datasets publicly available for a wider adoption. Then, we review the submitted methods from fourteen teams worldwide, analyze the competition outcomes, and assess the performance of each team.
There are many methods of scoring the importance of variables in prediction of a response but not much is known about their accuracy. This paper partially fills the gap by introducing a new method based on the GUIDE algorithm and comparing it with 11 existing methods. For data without missing values, eight methods are shown to give biased scores that are too high or too low, depending on the type of variables (ordinal, binary or nominal) and whether or not they are dependent on other variables, even when all of them are independent of the response. Among the remaining four methods, only GUIDE continues to give unbiased scores if there are missing data values. It does this with a self-calibrating bias-correction step that is applicable to data with and without missing values. GUIDE also provides threshold scores for differentiating important from unimportant variables with 95 and 99 percent confidence. Correlations of the scores to the predictive power of the methods are studied in three real data sets. For many methods, correlations with marginal predictive power are much higher than with conditional predictive power.
Pub. online:22 Feb 2021Type:Computing In Data Science
Journal:Journal of Data Science
Volume 19, Issue 2 (2021): Special issue: Continued Data Science Contributions to COVID-19 Pandemic, pp. 293–313
Abstract
The COVID-19 (COrona VIrus Disease 2019) pandemic has had profound global consequences on health, economic, social, behavioral, and almost every major aspect of human life. Therefore, it is of great importance to model COVID-19 and other pandemics in terms of the broader social contexts in which they take place. We present the architecture of an artificial intelligence enhanced COVID-19 analysis (in short AICov), which provides an integrative deep learning framework for COVID-19 forecasting with population covariates, some of which may serve as putative risk factors. We have integrated multiple different strategies into AICov, including the ability to use deep learning strategies based on Long Short-Term Memory (LSTM) and event modeling. To demonstrate our approach, we have introduced a framework that integrates population covariates from multiple sources. Thus, AICov not only includes data on COVID-19 cases and deaths but, more importantly, the population’s socioeconomic, health, and behavioral risk factors at their specific locations. The compiled data are fed into AICov, and thus we obtain improved prediction by the integration of the data to our model as compared to one that only uses case and death data. As we use deep learning our models adapt over time while learning the model from past data.
Climate change is widely recognized as one of the most challenging, urgent and complex problem facing humanity. There are rising interests in understanding and quantifying climate changing. We analyze the climate trend in Canada using Canadian monthly surface air temperature, which is longitudinal data in nature with long time span. Analysis of such data is challenging due to the complexity of modeling and associated computation burdens. In this paper, we divide this type of longitudinal data into time blocks, conduct multivariate regression and utilize a vine copula model to account for the dependence among the multivariate error terms. This vine copula model allows separate specification of within-block and between-block dependence structure and has great flexibility of modeling complex association structures. To release the computational burden and concentrate on the structure of interest, we construct composite likelihood functions, which leave the connecting structure between time blocks unspecified. We discuss different estimation procedures and issues regarding model selection and prediction. We explore the prediction performance of our vine copula model by extensive simulation studies. An analysis of the Canada climate dataset is provided.
Early in the course of the pandemic in Colorado, researchers wished to fit a sparse predictive model to intubation status for newly admitted patients. Unfortunately, the training data had considerable missingness which complicated the modeling process. I developed a quick solution to this problem: Median Aggregation of penaLized Coefficients after Multiple imputation (MALCoM). This fast, simple solution proved successful on a prospective validation set. In this manuscript, I show how MALCoM performs comparably to a popular alternative (MI-lasso), and can be implemented in more general penalized regression settings. A simulation study and application to local COVID-19 data is included.