Deep neural networks have a wide range of applications in data science. This paper reviews neural network modeling algorithms and their applications in both supervised and unsupervised learning. Key examples include: (i) binary classification and (ii) nonparametric regression function estimation, both implemented with feedforward neural networks ($\mathrm{FNN}$); (iii) sequential data prediction using long short-term memory ($\mathrm{LSTM}$) networks; and (iv) image classification using convolutional neural networks ($\mathrm{CNN}$). All implementations are provided in $\mathrm{MATLAB}$, making these methods accessible to statisticians and data scientists to support learning and practical application.
Pub. online:8 Nov 2022Type:Statistical Data ScienceOpen Access
Journal:Journal of Data Science
Volume 20, Issue 4 (2022): Special Issue: Large-Scale Spatial Data Science, pp. 439–460
Abstract
In the last few decades, the size of spatial and spatio-temporal datasets in many research areas has rapidly increased with the development of data collection technologies. As a result, classical statistical methods in spatial statistics are facing computational challenges. For example, the kriging predictor in geostatistics becomes prohibitive on traditional hardware architectures for large datasets as it requires high computing power and memory footprint when dealing with large dense matrix operations. Over the years, various approximation methods have been proposed to address such computational issues, however, the community lacks a holistic process to assess their approximation efficiency. To provide a fair assessment, in 2021, we organized the first competition on spatial statistics for large datasets, generated by our ExaGeoStat software, and asked participants to report the results of estimation and prediction. Thanks to its widely acknowledged success and at the request of many participants, we organized the second competition in 2022 focusing on predictions for more complex spatial and spatio-temporal processes, including univariate nonstationary spatial processes, univariate stationary space-time processes, and bivariate stationary spatial processes. In this paper, we describe in detail the data generation procedure and make the valuable datasets publicly available for a wider adoption. Then, we review the submitted methods from fourteen teams worldwide, analyze the competition outcomes, and assess the performance of each team.
There is a great deal of prior knowledge about gene function and regulation in the form of annotations or prior results that, if directly integrated into individual prognostic or diagnostic studies, could improve predictive performance. For example, in a study to develop a predictive model for cancer survival based on gene expression, effect sizes from previous studies or the grouping of genes based on pathways constitute such prior knowledge. However, this external information is typically only used post-analysis to aid in the interpretation of any findings. We propose a new hierarchical two-level ridge regression model that can integrate external information in the form of “meta features” to predict an outcome. We show that the model can be fit efficiently using cyclic coordinate descent by recasting the problem as a single-level regression model. In a simulation-based evaluation we show that the proposed method outperforms standard ridge regression and competing methods that integrate prior information, in terms of prediction performance when the meta features are informative on the mean of the features, and that there is no loss in performance when the meta features are uninformative. We demonstrate our approach with applications to the prediction of chronological age based on methylation features and breast cancer mortality based on gene expression features.
Pub. online:22 Feb 2021Type:Computing In Data Science
Journal:Journal of Data Science
Volume 19, Issue 2 (2021): Special issue: Continued Data Science Contributions to COVID-19 Pandemic, pp. 293–313
Abstract
The COVID-19 (COrona VIrus Disease 2019) pandemic has had profound global consequences on health, economic, social, behavioral, and almost every major aspect of human life. Therefore, it is of great importance to model COVID-19 and other pandemics in terms of the broader social contexts in which they take place. We present the architecture of an artificial intelligence enhanced COVID-19 analysis (in short AICov), which provides an integrative deep learning framework for COVID-19 forecasting with population covariates, some of which may serve as putative risk factors. We have integrated multiple different strategies into AICov, including the ability to use deep learning strategies based on Long Short-Term Memory (LSTM) and event modeling. To demonstrate our approach, we have introduced a framework that integrates population covariates from multiple sources. Thus, AICov not only includes data on COVID-19 cases and deaths but, more importantly, the population’s socioeconomic, health, and behavioral risk factors at their specific locations. The compiled data are fed into AICov, and thus we obtain improved prediction by the integration of the data to our model as compared to one that only uses case and death data. As we use deep learning our models adapt over time while learning the model from past data.
Climate change is widely recognized as one of the most challenging, urgent and complex problem facing humanity. There are rising interests in understanding and quantifying climate changing. We analyze the climate trend in Canada using Canadian monthly surface air temperature, which is longitudinal data in nature with long time span. Analysis of such data is challenging due to the complexity of modeling and associated computation burdens. In this paper, we divide this type of longitudinal data into time blocks, conduct multivariate regression and utilize a vine copula model to account for the dependence among the multivariate error terms. This vine copula model allows separate specification of within-block and between-block dependence structure and has great flexibility of modeling complex association structures. To release the computational burden and concentrate on the structure of interest, we construct composite likelihood functions, which leave the connecting structure between time blocks unspecified. We discuss different estimation procedures and issues regarding model selection and prediction. We explore the prediction performance of our vine copula model by extensive simulation studies. An analysis of the Canada climate dataset is provided.