Abstract: A new extension of the generalized gamma distribution with six parameter called the Kummer beta generalized gamma distribution is introduced and studied. It contains at least 28 special models such as the beta generalized gamma, beta Weibull, beta exponential, generalized gamma, Weibull and gamma distributions and thus could be a better model for analyzing positive skewed data. The new density function can be expressed as a linear combination of generalized gamma densities. Various mathematical properties of the new distribution including explicit expressions for the ordinary and incomplete moments, generating function, mean deviations, entropy, density function of the order statistics and their moments are derived. The elements of the observed information matrix are provided. We discuss the method of maximum likelihood and a Bayesian approach to fit the model parameters. The superiority of the new model is illustrated by means of three real data sets.
The generalized gamma model has been used in several applied areas such as engineering, economics and survival analysis. We provide an extension of this model called the transmuted generalized gamma distribution, which includes as special cases some lifetime distributions. The proposed density function can be represented as a mixture of generalized gamma densities. Some mathematical properties of the new model such as the moments, generating function, mean deviations and Bonferroni and Lorenz curves are provided. We estimate the model parameters using maximum likelihood. We prove that the proposed distribution can be a competitive model in lifetime applications by means of a real data set.