Physician performance is critical to caring for patients admitted to the intensive care unit (ICU), who are in life-threatening situations and require high level medical care and interventions. Evaluating physicians is crucial for ensuring a high standard of medical care and fostering continuous performance improvement. The non-randomized nature of ICU data often results in imbalance in patient covariates across physician groups, making direct comparisons of the patients’ survival probabilities for each physician misleading. In this article, we utilize the propensity weighting method to address confounding, achieve covariates balance, and assess physician effects. Due to possible model misspecification, we compare the performance of the propensity weighting methods using both parametric models and super learning methods. When the generalized propensity or the quality function is not correctly specified within the parametric propensity weighting framework, super learning-based propensity weighting methods yield more efficient estimators. We demonstrate that utilizing propensity weighting offers an effective way to assess physician performance, a topic of considerable interest to hospital administrators.
The odd inverse Pareto-Weibull distribution is introduced as a new lifetime distribution based on the inverse Pareto and the T-X family. Some mathematical properties of the new distribution are studied. The method of maximum likelihood is used for estimating the model parameters and the observed Fisher’s information matrix is derived. The importance and flexibility of the proposed model are assessed using a real data.
Abstract: The paper deals with the introduction of new generalized model i.e., Rayleigh Lomax distribution. In this manuscript, a comprehensive description of the various structural properties of the new proposed model including explicit expressions for moments, quantile function, generating functions and Renyi entropy have been given. The parameters of the newly developed distribution have been estimated using the technique of maximum likelihood estimation. Also, the generalized model has been compared with different models for illustration and best fit.
The Power function distribution is a flexible life time distribution that has applications in finance and economics. It is, also, used to model reliability growth of complex systems or the reliability of repairable systems. A new weighted Power function distribution is proposed using a logarithmic weight function. Statistical properties of the weighted power function distribution are obtained and studied. Location measures such as mode, median and mean, reliability measures such as reliability function, hazard and reversed hazard functions and the mean residual life are derived. Shape indices such as skewness and kurtosis coefficients and order statistics are obtained. Parametric estimation is performed to obtain estimators for the parameters of the distribution using three different estimation methods; namely: the maximum likelihood method, the L-moments method and the method of moments. Numerical simulation is carried out to validate the robustness of the proposed distribution.
Abstract: We introduce a new class of the slash distribution using folded normal distribution. The proposed model defined on non-negative measure ments extends the slashed half normal distribution and has higher kurtosis than the ordinary half normal distribution. We study the characterization and properties involving moments and some measures based on moments of this distribution. Finally, we illustrate the proposed model with a simulation study and a real application.