Abstract: Design-based regression regards the survey response as a constant waiting to be observed. Bechtel (2007) replaced this constant with the sum of a fixed true value and a random measurement error. The present paper relaxes the assumption that the expected error is zero within a survey respondent. It also allows measurement errors in predictor variables as well as in the response variable. Reasonable assumptions about these errors over respondents, along with coefficient alpha in psychological test theory, enable the regression of true responses on true predictors. This resolves two major issues in survey regression, i.e. errors in variables and item non-response. The usefulness of this resolution is demonstrated with three large datasets collected by the European Social Survey in 2002, 2004 and 2006. The paper concludes with implications of true-value regression for survey theory and practice and for surveying large world populations.
Abstract: The present paper addresses the propensity to vote with data from the third and fourth rounds of the European Social Survey. The regression of voting propensities on true predictor scores is made possible by estimates of predictor reliabilities (Bechtel, 2010; 2011). This resolves two major problems in binary regression, i.e. errors in variables and imputation errors. These resolutions are attained by a pure randomization theory that incorporates fixed measurement error in design-based regression. This type of weighted regression has long been preferred by statistical agencies and polling organizations for sampling large populations.