Abstract: In the United States, diabetes is common and costly. Programs to prevent new cases of diabetes are often carried out at the level of the county, a unit of local government. Thus, efficient targeting of such programs re quires county-level estimates of diabetes incidence−the fraction of the non diabetic population who received their diagnosis of diabetes during the past 12 months. Previously, only estimates of prevalence−the overall fraction of population who have the disease−have been available at the county level. Counties with high prevalence might or might not be the same as counties with high incidence, due to spatial variation in mortality and relocation of persons with incident diabetes to another county. Existing methods cannot be used to estimate county-level diabetes incidence, because the fraction of the population who receive a diabetes diagnosis in any year is too small. Here, we extend previously developed methods of Bayesian small-area esti mation of prevalence, using diffuse priors, to estimate diabetes incidence for all U.S. counties based on data from a survey designed to yield state-level estimates. We found high incidence in the southeastern United States, the Appalachian region, and in scattered counties throughout the western U.S. Our methods might be applicable in other circumstances in which all cases of a rare condition also must be cases of a more common condition (in this analysis, “newly diagnosed cases of diabetes” and “cases of diabetes”). If ap propriate data are available, our methods can be used to estimate proportion of the population with the rare condition at greater geographic specificity than the data source was designed to provide.
Abstract: Information regarding small area prevalence of chronic disease is important for public health strategy and resourcing equity. This paper develops a prevalence model taking account of survey and census data to derive small area prevalence estimates for diabetes. The application involves 32000 small area subdivisions (zip code census tracts) of the US, with the prevalence estimates taking account of information from the US-wide Behavioral Risk Factor Surveillance System (BRFSS) survey on population prevalence differentials by age, gender, ethnic group and education. The effects of such aspects of population composition on prevalence are widely recognized. However, the model also incorporates spatial or contextual influences via spatially structured effects for each US state; such contextual effects are allowed to differ between ethnic groups and other demographic categories using a multivariate spatial prior. A Bayesian estimation approach is used and analysis demonstrates the considerably improved fit of a fully specified compositional-contextual model as compared to simpler ‘standard’ approaches which are typically limited to age and area effects.