There is growing interest in accommodating network structure in panel data models. We consider dynamic network Poisson autoregressive (DN-PAR) models for panel count data, enabling their use in regard to a time-varying network structure. We develop a Bayesian Markov chain Monte Carlo technique for estimating the DN-PAR model, and conduct Monte Carlo experiments to examine the properties of the posterior quantities and compare dynamic and constant network models. The Monte Carlo results indicate that the bias in the DN-PAR models is negligible, while the constant network model suffers from bias when the true network is dynamic. We also suggest an approach for extracting the time-varying network from the data. The empirical results for the count data for confirmed cases of COVID-19 in the United States indicate that the extracted dynamic network models outperform the constant network models in regard to the deviance information criterion and out-of-sample forecasting.
Abstract: A new extension of the generalized gamma distribution with six parameter called the Kummer beta generalized gamma distribution is introduced and studied. It contains at least 28 special models such as the beta generalized gamma, beta Weibull, beta exponential, generalized gamma, Weibull and gamma distributions and thus could be a better model for analyzing positive skewed data. The new density function can be expressed as a linear combination of generalized gamma densities. Various mathematical properties of the new distribution including explicit expressions for the ordinary and incomplete moments, generating function, mean deviations, entropy, density function of the order statistics and their moments are derived. The elements of the observed information matrix are provided. We discuss the method of maximum likelihood and a Bayesian approach to fit the model parameters. The superiority of the new model is illustrated by means of three real data sets.
Abstract: Breast cancer is the second most common type of cancer in the world (World Cancer Report, 2014 a, b). The evolution of breast cancer treatment usually allows a longer life of patients as well in many cases a relapse of the disease. Usually medical researchers are interested to analyze data denoting the time until the occurrence of an event of interest such as the time of death by cancer in presence of right censored data and some covariates. In some situations, we could have two lifetimes associated to the same patient, as for example, the time free of the disease until recurrence and the total lifetime of the patient. In this case, it is important to assume a bivariate lifetime distribution which describes the possible dependence between the two observations. We consider as an application, different parametric bivariate lifetime distributions to analyze a breast cancer data set considering continuous or discrete data. Inferences of interest are obtained under a statistical Bayesian approach. We get the posterior summaries of interest using existing MCMC (Markov Chain Monte Carlo) methods. The main goal of the study, is to compare the bivariate continuous and discrete distributions that better describes the breast cancer lifetimes.
The normal distribution is the most popular model in applications to real data. We propose a new extension of this distribution, called the Kummer beta normal distribution, which presents greater flexibility to model scenarios involving skewed data. The new probability density function can be represented as a linear combination of exponentiated normal pdfs. We also propose analytical expressions for some mathematical quantities: Ordinary and incomplete moments, mean deviations and order statistics. The estimation of parameters is approached by the method of maximum likelihood and Bayesian analysis. Likelihood ratio statistics and formal goodnessof-fit tests are used to compare the proposed distribution with some of its sub-models and non-nested models. A real data set is used to illustrate the importance of the proposed model.