Abstract: In this paper, we introduce a Bayesian analysis for bivariate geometric distributions applied to lifetime data in the presence of covariates, censored data and cure fraction using Markov Chain Monte Carlo (MCMC) methods. We show that the use of a discrete bivariate geometric distribution could bring us some computational advantages when compared to standard existing bivariate exponential lifetime distributions introduced in the literature assuming continuous lifetime data as for example, the exponential Block and Basu bivariate distribution. Posterior summaries of interest are obtained using the popular OpenBUGS software. A numerical illustration is introduced considering a medical data set related to the analysis of a diabetic retinopathy data set.
Abstract: Simulation studies are important statistical tools used to inves-tigate the performance, properties and adequacy of statistical models. The simulation of right censored time-to-event data involves the generation of two independent survival distributions, where the rst distribution repre-sents the uncensored survival times and the second distribution represents the censoring mechanism. In this brief report we discuss how we can make it so that the percentage of censored data is previously de ned. The described method was used to generate data from a Weibull distribution, but it can be adapted to any other lifetime distribution. We further presented an R code function for generating random samples, considering the proposed approach.
We introduce a new class of distributions called the generalized odd generalized exponential family. Some of its mathematical properties including explicit expressions for the ordinary and incomplete moments, quantile and generating functions, RšĢnyi, Shannon and q-entropies, order statistics and probability weighted moments are derived. We also propose bivariate generalizations. We constructed a simple type Copula and intro-duced a useful stochastic property. The maximum likelihood method is used for estimating the model parameters. The importance and flexibility of the new family are illustrated by means of two applications to real data sets. We assess the performance of the maximum likelihood estimators in terms of biases and mean squared errors via a simulation study.
Abstract: In this paper we propose a new three-parameters lifetime distribu tion with decreasing hazard function, the long-term exponential geometric distribution. The new distribution arises on latent competing risks scenarios, where the lifetime associated with a particular risk is not observable, rather we observe only the minimum lifetime value among all risks, and there is presence of long-term survival. The properties of the proposed distribution are discussed, including its probability density function and explicit algebraic formulas for its survival and hazard functions, order statistics, Bonferroni function and the Lorenz curve. The parameter estimation is based on the usual maximum likelihood approach. We compare the new distribution with its particular case, the long-term exponential distribution, as well as with the long-term Weibull distribution on two real datasets, observing its poten tial and competitiveness in comparison with an usual lifetime distribu