Nonparametric Modelling of Quarterly Unemployment Rates
Volume 5, Issue 1 (2007), pp. 85–101
Pub. online: 4 August 2022
Type: Research Article
Open Access
Published
4 August 2022
4 August 2022
Abstract
Abstract: A seasonal additive nonlinear vector autoregression (SANVAR) model is proposed for multivariate seasonal time series to explore the possible interaction among the various univariate series. Significant lagged variables are selected and additive autoregression functions estimated based on the selected variables using spline smoothing method. Conservative confidence bands are constructed for the additive autoregression function. The model is fitted to two sets of bivariate quarterly unemployment rate data with comparisons made to the linear periodic vector autoregression model. It is found that when the data does not significantly deviate from linearity, the periodic model is preferred. In cases of strong nonlinearity, however, the additive model is more parsimonious and has much higher out-of-sample prediction power. In addition, interactions among various univariate series are automatically detected.