
Journal of Data Science 5(2007), 85-101

Nonparametric Modelling of Quarterly Unemployment Rates

Lijian Yang
Michigan State University

Abstract: A seasonal additive nonlinear vector autoregression (SANVAR)
model is proposed for multivariate seasonal time series to explore the possible
interaction among the various univariate series. Significant lagged variables
are selected and additive autoregression functions estimated based on the
selected variables using spline smoothing method. Conservative confidence
bands are constructed for the additive autoregression function. The model
is fitted to two sets of bivariate quarterly unemployment rate data with
comparisons made to the linear periodic vector autoregression model. It is
found that when the data does not significantly deviate from linearity, the
periodic model is preferred. In cases of strong nonlinearity, however, the
additive model is more parsimonious and has much higher out-of-sample
prediction power. In addition, interactions among various univariate series
are automatically detected.

Key words: Autoregression, BIC, confidence bands, prediction error, sea-
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1. Introduction

It has been well known that nonlinearity exists widely in macroeconomic
time series, see, for example, Huang and Yang (2004) for empirical evidence of
nonlinearity in the US unemployment rates. Generally speaking, when deviation
from linear time series model is significant, nonparametric autoregression is more
appropriate for the identification and forecasting of time series unless there is
convincing evidence of a simpler parametric nonlinear structure that generates
the data series. Hence, nonparametric smoothing of nonlinear autoregressive time
series can be extremely useful for time series analysis, not only for exploratory
study, but also for robust model selection and prediction.

Non- and semi- parametric smoothing estimation of unknown functions have
found many applications in the last two decades. In the time series literature,
Robinson (1983) first applied kernel (Nadaraya-Watson) method to estimate au-
toregression function of unknown form. Other significant contributions include:
Györfi, Härdle, Sarda and Vieu (1989), Auestad and Tjøstheim (1990), Tjøstheim
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and Auestad (1994), Yao and Tong (1994), Fan and Yao (1998), Härdle, Tsybakov
and Yang (1998), Yang and Tschernig (2002), to name a few from the great num-
ber of published articles in this area. One common feature of these cited works is
that they are all based on the local least squares method of kernel/local polyno-
mial regression, and thus are all computationally intensive. Also unaddressed is
the issue of the “curse of dimensionality”, which refers to the lack of accuracy in
estimating multivariate functions of general nonparametric form. In the context
of time series modelling, the high dimensionality can be the result of the time
series being multivariate and/or potentially too many lagged variables being sig-
nificant for forecasting. For the two unemployment rates studied in this paper,
24 potentially significant lagged variables are examined.

The issue of the “curse of dimensionality” can be dealt with via additive
modelling, as first proposed in Hastie and Tibshirani (1990). More recent works
on the subject of additive models include Chen and Tsay (1993), Tjøstheim and
Auestad (1994), Linton and Nielsen (1995), Sperlich, Tjøstheim and Yang (2002),
Huang and Yang (2004). In particular, Huang and Yang (2004) had taken a dif-
ferent approach to the estimation of nonparametric additive regression function,
by polynomial spline smoothing instead of kernel smoothing. The advantage of
polynomial spline is that only one least squares problem needs to be solved to ob-
tain estimates of all function values, rather than solving a least squares problem
to estimate each function value. Typically, this means that the spline estimation
of additive model can be thousands of times faster than standard kernel based
methods, such as in Linton and Nielsen (1995) or Sperlich, Tjøstheim and Yang
(2002). Spline smoothing has been used in other dimension reduction models, for
example, varying coefficient model as in Huang, Wu and Zhou (2002).

In this paper we extend the additive autoregression model of Huang and Yang
(2004) to multivariate seasonal time series. One example of such series is the
bivariate series consisting of quarterly unemployment rates of men and women
in the US. What makes such multivariate series different from univariate series is
that there may exist significant interaction among the various univariate series.
This turns out to be the case for the men’s and women’s unemployment rates,
while it turns out differently for another bivariate series. In both cases, however,
the same data-driven inference procedures are applied without prior assumptions
of interaction or lack thereof. Hence the issue of interaction is decided by “letting
the data speak for themselves”.

In section 2 we will formulate a seasonal additive nonlinear vector autoregres-
sion model (SANVAR), and discuss its use in identifying the functional structure
in seasonal vector time series, via spline smoothing. In section 3, we briefly
describe an asymptotically conservative confidence band for the nonparametric
autoregression function, also based on the polynomial spline method. Section 4
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discusses the findings on two bivariate quarterly unemployment rates data, and
draws some general conclusions about the benefits and precautions when fitting
the SANVAR model.

2. The SANVAR Model

Our aim in this section is to develop a general modelling framework, called
the seasonal additive nonlinear vector autoregression model (SANVAR), for a
multivariate seasonal process {Yt,γ}n,dt=1,γ=1. There are d different series, the γ-th
of which is {Yt,γ}nt=1. Each of the series is seasonal with S seasons. The approach
we take to incorporate seasonality is distinct from those in Lütkepohl (1993),
Wolters (1992). We model the d series and S seasons in the form

YτS+s,γ = ms,γ (YτS+s−j,β)(j,β)∈Λγ
+ ξτS+s,γ,

ms,γ (yj,β)(j,β)∈Λγ
= m0,s,γ +

∑
(j,β)∈Λγ

ms,γ,j,β (yj,β) , 1 ≤ γ ≤ d, τ ≥M/S,(2.1)

where s ∈ {1, ..., S} indicates the season, Λγ is a subset of {1, ...,M} × {1, ..., d}
for significant lagged variables, {ξτS+s,γ}1≤γ≤d,τ≥M/S are martingale differences
with respect to the σ-field generated by variables {YτS+s−j,β}j>0,1≤β≤d, and the
multivariate autoregression function ms,γ is an additive function of variables
YτS+s−j,β, (j, β) ∈ Λγ . The largest lag index allowed M is typically taken to
be a multiple of S, and the size of set Λγ is limited to be no more than a fixed
integer λmax. Each component function ms,γ,j,β satisfies the identifiability con-
dition Ems,γ,j,β (Yt−j,β) ≡ 0, as is common in additive modelling. If all the
component functions ms,γ,j,β are restricted to be linear, the model is a periodic
vector autoregressive (PVAR) model as in Lütkepohl (1993).

When one fits a SANVAR model (2.1) to a time series γ, {Yt,γ}nt=1, the lag
set Λγ is unknown a priori and has to be selected. Thus, every index pair (j, β) ∈
{1, ...,M} × {1, ..., d} could potentially be in Λγ . For many real time series data,
however, most of the functions ms,γ,j,β turn out to be insignificant, as one will
see in section 4.

For the fitting of SANVAR, we use the adaptive spline approach, which
is described here in detail. For all seasons s and every index pair (j, β) ∈
{1, ...,M} × {1, ..., d}, one denote by the interval [aj,β, bj,β] the range of vari-
able {YτS+s−j,β}τ≥M/S , which is divided into N + 1 equally-spaced subintervals.

Here N = Nn =
[
k (n/S)1/(2p+3)

]
in which k is a tuning constant (default set to

1), and p is an integer no more than the degree of smoothness of the component
functions (default is set to 1). The N interior endpoints of these subintervals
are labelled as a(1)

j,β, ..., a
(N)
j,β , which form the knot sequence for the explanatory



88 Lijian Yang

variable Yt−j,β. Next we define the spline basis as the set of the following functions

B
(1)
j,β (y) = y, ..., B

(p)
j,β (y) = yp

B
(p+1)
j,β (y) =

(
y − a

(1)
j,β

)p
+
, ..., B

(p+N)
j,β (y) =

(
y − a

(N)
j,β

)p
+

where x+ = x if x > 0, 0 otherwise. Linear combinations of these spline basis are
piecewise smooth up to order p called spline functions. Since Nn → ∞ as n→ ∞,
all functions of smoothness order p can be approximated on interval [aj,β, bj,β] by
such linear combinations and so for every index pairs (s, γ) and (j, β) the function
ms,γ,j,β (y) is approximated by spline functions.

To estimate the component functions, we have to solve an ordinary least
squares problem of the form

∑
M<τS+s≤n


YτS+s,γ − cs,γ −

M∑
j=1

d∑
β=1

p+Nn∑
l=1

c
(l)
s,γ,j,βB

(l)
j,β (YτS+s−j,β)




2

(2.2)

and the solution
{
ĉs,γ , ĉ

(l)
s,γ,j,β

}
will then provide estimators

m̂s,γ,j,β (y) =
p+N∑
l=1

ĉ
(l)
s,γ,j,βB

(l)
j,β (y) −

∑
M<τS+s≤n

p+N∑
l=1

ĉ
(l)
s,γ,j,βB

(l)
j,β (YτS+s−j,β)A−1

m̂0,s,γ = ĉs,γ +
∑

M<τS+s≤n

M∑
j=1

d∑
β=1

p+N∑
l=1

ĉ
(l)
s,γ,j,βB

(l)
j,β (YτS+s−j,β)A−1, (2.3)

where A =
∑

M<τS+s≤n 1. Fortunately, one typically will need only a small num-
ber of these estimators for the SANVAR modelling. To identify which of these are
significant, a BIC criterion is defined for each subset Λ = {(j1, β1) , ..., (jλ, βλ)} ⊂
{1, ...,M} × {1, ..., d} where j1 ≤ · · · ≤ jλ. Let

{
ĉs,γ−τ , ĉ

(l)
s,γ,j,β−τ

}
be the so-

lution of the least squares problem (2.2), but the sum is over (j, β) ∈ Λ and
with the squared error term at time τ removed, for every integer τ that satisfies
jλ < τS + s ≤ n. Then for every 1 ≤ γ ≤ d, the BIC criterion for the γ-th series
is defined as

BICγ (Λ) = {1 + λ(p+Nn)} lnnS
nS

+ ln


 1
S

S∑
s=1

1
ns,jλ,S

∑
jλ<τS+s≤n

{YτS+s,γ

−ĉs,γ−τ −
∑

(j,β)∈Λ

p+Nn∑
l=1

ĉ
(l)
s,γ,j,β−τB

(l)
j,β (YτS+s−j,β)}2


 (2.4)
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where nS = n/S, ns,jλ,S = the number of integers τ that satisfy jλ < τS + s ≤ n.
The set of significant variables selected by the BIC is then defined as

Λ̂γ = argmin
Λ⊂{1,...,M}×{1,...,d}

BICγ (Λ) , 1 ≤ γ ≤ d

and under reasonable assumptions (Huang and Yang 2004), it can be shown that

Λ̂γ → Λγ in probability, as n→ ∞, .1 ≤ γ ≤ d (2.5)

Notice that in the above steps, if all basis B(l)
j,β, l ≥ 2 are removed, the re-

sult would be the PVAR model. Once this set Λ̂γ is obtained, the ordinary
least squares problem (2.2) is solved only once based on this set and the result-
ing function estimates m̂s,γ,j,β are used to build the estimated SANVAR model.
This intelligent identification of a parsimonious model can be used for improving
forecasting. In the next section, we discuss forecasting based on SANVAR model.

3. Confidence Bands

Suppose that by using the BIC criterion (2.4), a set Λ̂γ of lags has been
determined for series γ of the multivariate time series, 1 ≤ γ ≤ d. The consistency
property in (2.5) allows one to take the estimated set Λ̂γ for the true set Λγ , for
the sake of simpler notation. The estimated SANVAR model is of the form

YτS+s,γ = ŶτS+s,γ + ξ̂τS+s,γ, ŶτS+s,γ = m̂s,γ (YτS+s−j,β)(j,β)∈Λγ
, (3.1)

1 ≤ γ ≤ d, τ ≥M/S, with predicted values ŶτS+s,γ, residuals ξ̂τS+s,γ, and where
the multivariate additive function

m̂s,γ (yj,β)(j,β)∈Λγ
= m̂0,s,γ +

∑
(j,β)∈Λγ

m̂s,γ,j,β (yj,β) (3.2)

with univariate functions m̂s,γ,j,β and constants m̂0,s,γ as defined in (2.3). In
this section, a procedure is described for the construction of simultaneous confi-
dence intervals, or, confidence bands, for functions ms,γ based on the estimated
SANVAR model (3.1).

Recently, confidence bands for univariate regression functions have been de-
veloped by Xia (1998), Claeskens and Van Keilegom (2003). The basic idea of
constructing asymptotic confidence bands from polynomial spline estimation is
proposed in Wang and Yang (2005), which is limited to univariate regression
(this means d = M = 1) and piecewise constant (i.e., p = 0) and piecewise linear
splines (i.e., p = 1). Yang (2004) extended the procedure of Wang and Yang
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(2005) to additive model, using piecewise linear spline (p = 1) and wild boot-
strap. The method is adopted to SANVAR model, and the steps are described
here. The confidence level is taken to be 1 − α, where α has a default value of
0.05.

Step 1 Let {δτ,b}M<τS+s≤n , b = 1, ..., 400 be i.i.d. samples of the following dis-
crete distribution

δτ,b =
{

2−1
(
1 −√

5
)

with probability 10−1
(
5 +

√
5
)

2−1
(
1 +

√
5
)

with probability 10−1
(
5 −√

5
) ,M < τS+s ≤ n.

Step 2 For any 1 ≤ b ≤ 400, define the b-th wild bootstrap sample as

YτS+s,γ,b = m̂s,γ (YτS+s−j,β)(j,β)∈Λγ
+ δτ,bξ̂τS+s,γ, 1 ≤ γ ≤ d, τ ≥M/S

(3.3)
with residuals ξ̂τS+s,γ, and where the multivariate additive functions m̂s,γ

are as defined in (3.2). Next, solve the least squares problem for the wild
bootstrap sample

∑
M<τS+s≤n


YτS+s,γ,b − cs,γ −

M∑
j=1

d∑
β=1

p+Nn∑
l=1

c
(l)
s,γ,j,βB

(l)
j,β (YτS+s−j,β)




2

and use the solution
{
ĉs,γ,b, ĉ

(l)
s,γ,j,β,b

}
to obtain the b-th bootstrap estimator

m̂s,γ,b (yj,β)(j,β)∈Λγ
= ĉs,γ,b +

M∑
j=1

d∑
β=1

p+Nn∑
l=1

ĉ
(l)
s,γ,j,β,bB

(l)
j,β (yj,β) .

Step 3 Define an inflation factor rdγ ,Nn,α = z−1
1−α/2

√
A2, where A2 is the 100(1 −

α/ (Nn + 1)dγ )-th quantile of the chi-square distribution with degrees of
freedom 2dγ , where one denotes the number of variables in Λγ as dγ . Denote
by m̂L,α/2

s,γ (yj,β)(j,β)∈Λγ
and m̂U,α/2

s,γ (yj,β)(j,β)∈Λγ
respectively the lower and

upper 100 (1 − α/2) % quantiles of the set{m̂s,γ,b (yj,β)(j,β)∈Λγ
}1≤b≤400, and

m̂L,α/2
s,γ (yj,β)(j,β)∈Λγ

= m̂s,γ (yj,β)(j,β)∈Λγ
+

{m̂L,α/2
s,γ (yj,β)(j,β)∈Λγ

− m̂s,γ (yj,β)(j,β)∈Λγ
}

× rdγ ,Nn,α (3.4)

m̂U,α/2
s,γ (yj,β)(j,β)∈Λγ

= m̂s,γ (yj,β)(j,β)∈Λγ
+

{m̂U,α/2
s,γ (yj,β)(j,β)∈Λγ

− m̂s,γ (yj,β)(j,β)∈Λγ
}

× rdγ ,Nn,α. (3.5)
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Then
[
m̂
L,α/2
s,γ (yj,β)ψ , m̂

U,α/2
s,γ (yj,β)ψ

]
is the 100 (1 − α) % confidence band

of the function ms,γ (yj,β)ψ of the dγ variables
(
YτS+s−j,e

¯
ta

)
ψ
, where the

subscript ψ denotes (j, β) ∈ Λγ .

Using the wild bootstrap sample (3.3) is justified by the same reason as in
Sperlich, Tjøstheim and Yang (2002), i.e., in terms of conditional moments up to
order two, for any 1 ≤ b ≤ 400, the b-th bootstrap sample{

(YτS+s−j,β)(j,β)∈Λγ
, δτ,bξ̂τS+s,γ

}
1≤γ≤d,τ≥M/S

always mimicks the original sample
{
(YτS+s−j,β)(j,β)∈Λγ

, ξτS+s,γ

}
1≤γ≤d,τ≥M/S

,

due to the fact that E (δτ,b) ≡ 0, var (δτ,b) ≡ 1. The performance of the above
wild bootstrap procedure has also been examined via Monte-Carlo study in Yang
(2004). In particular, simulation experiments have shown that the procedure is
extremely robust in regard to the number of bootstrap samples as long as it is
higher than 400.

While the above construction is easily implemented in any software, in this
paper we have done all computing in the environment of XploRe [see Härdle,
Hlavka and Klinke (2000)]. The above wild bootstrap confidence band, according
to the Monte-Carlo results of Yang (2004), is asymptotically conservative. In
other words, for any 1 ≤ γ ≤ d

liminfn→∞P [ An ] ≥ 1 − α (3.6)

where An denotes the event[
m̂L,α/2
s,γ (yj,β)(j,β)∈Λγ

≤ ms,γ (yj,β)(j,β)∈Λγ
≤ m̂U,α/2

s,γ (yj,β)(j,β)∈Λγ
for all yj,β

]
.

In addition, Yang (2004) had also provided some Monte Carlo evidence that the
confidence band narrows at the rate of n−2/5 log1/2 (n) as n→ ∞.

In the next section, we will apply the BIC criterion and the wild bootstrap
confidence band to some unemployment series and discover some nontrivial de-
pendence structures in these series.

4. Unemployment Rates

In this section we will closely examine four sets of quarterly unemployment
rate data collected from the Current Population Survey (SIC) at the US Bureau
of Labor Statistics. The first two series are the quarterly unemployment rates
of all men 20 years & over, and all women 20 years & over, regardless of ethnic
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origins, family status, occupation, profession and race, from 1948 to 2002. The
other two series consist of the quarterly unemployment rates of all whites 16 years
& over, and all African Americans 16 years & over, regardless of ethnic origins,
family status, occupation, profession and sexes, from 1972 to 2003.

The approach is to model respectively the first two jointly and the last two
jointly as bivariate time series, of S = 4 seasons. For the first data, since there
are a total of 220 quarters, the combined time series is {Rt,γ}220,2

t=1,γ=1 where

Rt,1 = unemployment rate of men 20 years and over in quarter t
Rt,2 = unemployment rate of women 20 years and over in quarter t,

while for the second, there are a total of 124 quarters, and the combined series
is {Rt,γ}124,2

t=1,γ=1 where

Rt,1 = unemployment rate of whites 16 years and over in quarter t
Rt,2 = unemployment rate of African Americans 16 years and over in quarter t.

It is more convenient to write the time series in the rescaled time τ as RτS+s,γ , s ∈
{1, ..., S} , τ = 0, 1, .... Preliminary examination suggests fourth differencing, thus
we actually analyze YτS+s,γ = ∇SRτS+s,γ.

For the two bivariate data sets, we use the beginning 90% of the data to
estimate the model and then calculate the out-of-sample prediction error for the
last 10% of the data. Both SANVAR and PVAR models are used for comparison.
The definition of YτS+s−S,γ as YτS+s,γ = RτS+s,γ −RτS+s−S,γ leads one to define
the forecasts of RτS+s,γ in terms of the forecasts of YτS+s,γ, i.e., R̂τS+s,γ =
ŶτS+s,γ +RτS+s−S,γ.

For the men/women data, the fitted PVAR models give the following fore-
casting equations

Ŷ4τ+1,1 = −0.030 − 1.039Y4τ−1,1 + 2.006Y4τ,1

Ŷ4τ+2,1 = −0.002 − 0.749Y4τ,1 + 1.309Y4τ+1,1

Ŷ4τ+3,1 = −0.011 − 0.406Y4τ+1,1 + 1.191Y4τ+2,1

Ŷ4τ+4,1 = 0.005 − 0.702Y4τ+2,1 + 1.475Y4τ+3,1 (4.1)
Ŷ4τ+1,2 = −0.019 + 0.421Y4τ−4,1 − 0.471Y4τ−6,2 − 0.981Y4τ−2,2 + 1.549Y4τ,2

Ŷ4τ+2,2 = 0.013 + 0.006Y4τ−3,1 + 0.067Y4τ−5,2 − 0.357Y4τ−1,2 + 1.073Y4τ+1,2

Ŷ4τ+3,2 = 0.012 + 0.094Y4τ−2,1 + 0.009Y4τ−4,2 − 0.207Y4τ,2 + 0.878Y4τ+2,2

Ŷ4τ+4,2 = −0.019 + 0.134Y4τ−1,1 − 0.069Y4τ−3,2 − 0.432Y4τ+1,2

+ 1.029Y4τ+3,2 (4.2)

whereas the SANVAR forecasting equations are

Ŷ4τ+1,1 = −0.503 − 0.333Y4τ−2,1 + 1.015Y4τ,1
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−0.365(Y4τ−2,1 + 0.667)+ − 0.456(Y4τ−2,1 − 1.467)+
+1.137(Y4τ,1 + 0.800)+ − 1.210(Y4τ,1 − 1.000)+

Ŷ4τ+2,1 = −0.050 − 0.251Y4τ−1,1 + 0.850Y4τ+1,1

−0.048(Y4τ−1,1 + 0.43)+ − 0.449(Y4τ−1,1 − 1.233)+
+0.072(Y4τ+1,1 + 1.333)+ + 0.196(Y4τ+1,1 − 1.033)+

Ŷ4τ+3,1 = −0.155 + 0.019Y4τ,1 + 0.569Y4τ+2,1

−0.110(Y4τ,1 + 0.800)+ − 0.595(Y4τ,1 − 1.000)+
+0.392(Y4τ+2,1 + 0.667)+ − 0.048(Y4τ+2,1 − 1.467)+

Ŷ4τ+4,1 = −0.190 − 0.155Y4τ+1,1 + 0.756Y4τ+3,1

+0.122(Y4τ+1,1 + 1.333)+ − 0.757(Y4τ+1,1 − 1.033)+
+0.339(Y4τ+3,1 + 0.433)+ − 0.090(Y4τ+3,1 − 1.233)+ (4.3)

Ŷ4τ+1,2 = −0.611 − 0.116Y4τ−2,1 + 0.344Y4τ,1

−0.408(Y4τ−2,1 + 0.667)+ − 0.533(Y4τ−2,1 − 1.467)+
+1.237(Y4τ,1 + 0.800)+ − 0.595(Y4τ,1 − 1.000)+

Ŷ4τ+2,2 = −0.495 − 0.304Y4τ−1,1 + 0.394Y4τ+1,1

+0.096(Y4τ−1,1 + 0.433)+ − 0.408(Y4τ−1,1 − 1.233)+
+0.263(Y4τ+1,1 + 1.333)+ + 0.511(Y4τ+1,1 − 1.033)+

Ŷ4τ+3,2 = −0.663 − 0.532Y4τ,1 + 0.567Y4τ+2,1

+0.735(Y4τ,1 + 0.800)+ − 0.840(Y4τ,1 − 1.000)+
+0.113(Y4τ+2,1 + 0.667)+ + 0.001(Y4τ+2,1 − 1.467)+

Ŷ4τ+4,2 = −0.484 − 0.125Y4τ+1,1 + +0.265Y4τ+3,1

+0.179(Y4τ+1,1 + 1.333)+ − 0.507(Y4τ+1,1 − 1.033)+
+0.604(Y4τ+3,1 + 0.433)+ − 0.299(Y4τ+3,1 − 1.233)+ (4.4)

In Figures 1 and 2, the forecasts R̂t,1, R̂t,2, t = 201, ..., 220 are plotted ac-
cording to computation from the SANVAR equations (4.3), (4.4) and the PVAR
equations (4.1) and (4.2). The Mean Squared Prediction Error (MSPE) is eval-

uated for each model as 1
20

∑220
t=201

(
R̂t,γ −Rt,γ

)2
, γ = 1, 2. The SANVAR fore-

casts come with confidence bands as given in (3.4) and (3.5) of section 3. From
these plots, one can see clearly that the SANVAR model is superior to the PVAR
model. For the series of men, the SANVAR model is only slightly better in pre-
diction power, while for the series for women, the SANVAR model is twice as
powerful as the PVAR model in prediction. For both men’s and women’s series,
the confidence bands appear rather narrow and follow the trends well. Notice that
these confidence bands are simultaneous confidence intervals, not simultaneous
prediction intervals (which need to account for extra noise), hence the excellent
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Figure 1: Forecasting the men’s quarterly unemployment rates of 1998-2002,
based on men’s and women’s unemployment rates of 1948-1997. The solid
thick line represents the actual unemployment rates during 1998-2002, the
thin dashed line represents the forecasts. Both the parametric PVAR and
the nonparametric SANVAR models are used. In the plot for SANVAR model,
nonparametric confidence band for the predicted means are also plotted. The
MSPE is calculated as the mean squared prediction error between the predicted
and true unemployment rates.
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Figure 2: Forecasting the women’s quarterly unemployment rates of 1998-
2002, based on men’s and women’s unemployment rates of 1948-1997. The
solid thick line represents the actual unemployment rates during 1998-2002,
the thin dashed line represents the forecasts. Both the parametric PVAR and
the nonparametric SANVAR models are used. In the plot for SANVAR model,
nonparametric confidence band for the predicted means are also plotted. The
MSPE is calculated as the mean squared prediction error between the predicted
and true unemployment rates.

coverage of the actual data path by these bands is all the more remarkable. This is
consistent with the conservativeness of the confidence bands as in (3.6). Similar
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phenomenon will be observed again for the forecasting of whites and African
Americans’ unemployment rates, in Figures 3 and 4.

The PVAR model for the men’s series is a more parsimonious one than the
SANVAR model, as both contain two variables, yet the PVAR equations are
three term equations while the SANVAR equations contain seven terms. On the
other hand, the SANVAR model for the women’s series is more parsimonious than
the PVAR model, as each SANVAR equation contains only two variables, versus
the four variables of PVAR equations. It is for this reason that the SANVAR
is preferred to PVAR for the women’s series, but not for the men’s series. In
addition, the PVAR and SANVAR equations for the men’s series are actually
quite similar as well. Another interesting phenomenon is that the SANVAR
equations for men and women’s series are the same in form, both are expressed
in terms of the men’s series of one and three previous quarters. One explanation is
that the women’s job condition has been strongly affected by the men’s, possibly
due to family related factors.

For the white/black data, the PVAR equations are

Ŷ4τ+1,1 = −0.025 − 1.098Y4τ−1,1 + 1.956Y4τ,1

Ŷ4τ+2,1 = 0.003 − 0.541Y4τ,1 + 1.232Y4τ+1,1

Ŷ4τ+3,1 = −0.010 − 0.434Y4τ+1,1 + 1.238Y4τ+2,1

Ŷ4τ+4,1 = −0.006 − 0.599Y4τ+2,1 + 1.489Y4τ+3,1 (4.5)
Ŷ4τ+1,2 = −0.027 + 0.527Y4τ,2 − 1.768Y4τ−1,1 + 2.357Y4τ,1

Ŷ4τ+2,2 = −0.041 + 0.655Y4τ+1,2 − 0.563Y4τ,1 + 0.930Y4τ+1,1

Ŷ4τ+3,2 = −0.004 + 0.363Y4τ+2,2 − 0.420Y4τ+1,1 + 1.255Y4τ+2,1

Ŷ4τ+4,2 = 0.011 + 0.834Y4τ+3,2 − 1.242Y4τ+2,1 + 1.411Y4τ+3,1 (4.6)

whereas the SANVAR equations are

Ŷ4τ+1,1 = −0.164 − 0.702Y4τ−1,1 + 1.491Y4τ,1

+0.130(Y4τ−1,1 + 0.300)+ − 2.253(Y4τ−1,1 − 1.100)+
+0.253(Y4τ,1 + 0.600)+ + 1.282(Y4τ,1 − 0.800)+

Ŷ4τ+2,1 = 0.021 − 0.597Y4τ,1 + 1.322Y4τ+1,1

+0.211(Y4τ,1 + 0.600)+ − 0.341(Y4τ,1 − 0.800)+
−0.170(Y4τ+1,1 + 0.633)+ + 0.105(Y4τ+1,1 − 1.333)+

Ŷ4τ+3,1 = −0.103 + 0.207Y4τ+1,1 + 0.410Y4τ+2,1

−0.673(Y4τ+1,1 + 0.633)+ − 0.841(Y4τ+1,1 − 1.333)+
+1.063(Y4τ+2,1 + 0.433)+ + 0.490(Y4τ+2,1 − 1.433)+

Ŷ4τ+4,1 = 0.073 − 0.627Y4τ+2,1 + 1.681Y4τ+3,1
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+0.057(Y4τ+2,1 + 0.433)+ + 0.023(Y4τ+2,1 − 1.433)+
−0.169(Y4τ+3,1 + 0.300)+ − 0.277(Y4τ+3,1 − 1.100)+ (4.7)

Ŷ4τ+1,2 = 0.356 + 1.018Y4τ,2 − 0.613(Y4τ,2 + 0.633)+ + 1.052(Y4τ,2 − 1.433)+
Ŷ4τ+2,2 = −0.121 + 0.874Y4τ+1,2 + 0.031(Y4τ+1,2 + 0.867)+

+ 0.246(Y4τ+1,2 − 2.167)+
Ŷ4τ+3,2 = 0.054 + 0.781Y4τ+2,2 − 0.059(Y4τ+2,2 + 1.233)+

+ 0.237(Y4τ+2,2 − 2.033)+
Ŷ4τ+4,2 = −0.149 + 0.797Y4τ+3,2 + 0.305(Y4τ+3,2 + 0.800)+

− 0.788(Y4τ+3,2 − 1.800)+ (4.8)

Plots similar to Figures 1 and 2 have also been created for the whites and African
Americans, see Figures 3 and 4, based on equations (4.7), (4.5), (4.8) and (4.6)
respectively. The PVAR model (4.5) for the unemployment rates of whites ac-
tually predicts better than the SANVAR model (4.7). Again, this is due to the
fact that the fitted PVAR model for whites has only two explanatory variables
and is very similar to the SANVAR model. Therefore, one should always use the
linear periodic VAR model for better prediction when the two models produce
similar results. For the series of African Americans, the opposite is true, where
the SANVAR predicts much better than the PVAR. Also it is worth noticing that
for both whites and African Americans, the preferred forecasting model is always
a univariate series prediction model. To be precise, the PVAR model (4.5) for the
whites and the SANVAR model (4.8) for African Americans both suggest that
prediction for different races be best done separately. This strongly suggests that
whites and African Americans have been living in parallel economies and there
is little interaction of their unemployment rates.

Overall, the SANVAR model is a more robust option than the PVAR model.
It nearly always predicts better, except when the series is extremely close to
linearity, which is always indicated by the lack of parsimony of the fitted SANVAR
model. If the fitted SANVAR model is less parsimonious than the fitted PVAR
model (i.e., having more or the same number of variables), one should use the
simpler PVAR model for forecasting and inference. In addition, the model is able
to detect from the data whether there is any significant interaction among the
individual series.
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5 10 15
time (quarters)

2
3

4
5

6
7

8

pre
dic

ted
 an

d t
rue

 va
lue

s

Figure 3: Forecasting the white’s quarterly unemployment rates of 1999-2002,
based on white’s and African American’s unemployment rates of 1972-1998.
The solid thick line represents the actual unemployment rates during 1999-2002,
the thin dashed line represents the forecasts. Both the parametric PVAR and
the nonparametric SANVAR models are used. In the plot for SANVAR model,
nonparametric confidence band for the predicted means are also plotted. The
MSPE is calculated as the mean squared prediction error between the predicted
and true unemployment rates.
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PVAR prediction, MSPE = 0.42424
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Figure 4: Forecasting the African American’s quarterly unemployment rates
of 1999-2002, based on white’s and African American’s unemployment rates
of 1948-1998. The solid thick line represents the actual unemployment rates
during 1999-2002, the thin dashed line represents the forecasts. Both the para-
metric PVAR and the nonparametric SANVAR models are used. In the plot
for SANVAR model, nonparametric confidence band for the predicted means
are also plotted. The MSPE is calculated as the mean squared prediction error
between the predicted and true unemployment rates.
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