We consider a continuous outcome subject to nonresponse and a fully observed covariate. We propose a spline proxy pattern-mixture model (S-PPMA), an extension of the proxy pattern-mixture model (PPMA) (Andridge and Little, 2011), to estimate the mean of the outcome under varying assumptions about nonresponse. S-PPMA improves the robustness of PPMA, which assumes bivariate normality between the outcome and the covariate, by modeling the relationship via a spline. Simulations indicate that S-PPMA outperforms PPMA when the data deviate from normality and are missing not at random, with minor losses of efficiency when the data are normal.
Early in the course of the pandemic in Colorado, researchers wished to fit a sparse predictive model to intubation status for newly admitted patients. Unfortunately, the training data had considerable missingness which complicated the modeling process. I developed a quick solution to this problem: Median Aggregation of penaLized Coefficients after Multiple imputation (MALCoM). This fast, simple solution proved successful on a prospective validation set. In this manuscript, I show how MALCoM performs comparably to a popular alternative (MI-lasso), and can be implemented in more general penalized regression settings. A simulation study and application to local COVID-19 data is included.