Abstract: Behavioral risk factors for cancer tend to cluster within individuals, which can compound risk beyond that associated with the individual risk factors alone. There has been increasing attention paid to the prevalence of multiple risk factors (MRF) for cancer, and to the importance of designing interventions that help individuals reduce their risks across multiple behaviors simultaneously. The purpose of this paper is to develop methodology to identify an optimal linear combination of multiple risk factors (score function) which would facilitate evaluation of cancer interventions.
Abstract: This paper proposes to investigate inequality in Viet Nam from the point of view of a study of the urban/rural gap by means of a multilevel model. Using data from the Viet Nam Household Living Standards Survey of 2002, the paper constructs a multilevel model, yielding random effects in the urban/rural gap which can be seen as location-specific random contributions to the urban/rural gap above and beyond the effects of known location characteristics, such as the level of education of the population, etc. The paper also demonstrates how the multilevel model can be used to obtain small area estimates at the commune level.
Abstract: In the natural history of Human Immunodeficiency Virus Type-1 (HIV-1) infection, many studies included the participants who were seropos itive at time of enrollment. Estimation of the unknown times since exposure to HIV-1 in the prevalent cohorts is of primary importance for estimation of the incubation period of Acquired Immunodeficiency Syndrome (AIDS). To estimate incubation period of AIDS we used prior distribution of incubation times, based on a external data as suggested by Bacchetti and Jewell (1991, Biometrics, 47,947-960). In the present study, our estimate was nonpara metric based on a method proposed by Wang, Jewell and Tsai (1986, Annals of Statistics, 14, 1597-1605).
Abstract: The study of factor analytic models often has to address two im portant issues: (a) the determination of the “optimum” number of factors and (b) the derivation of a unique simple structure whose interpretation is easy and straightforward. The classical approach deals with these two tasks separately, and sometimes resorts to ad-hoc methods. This paper proposes a Bayesian approach to these two important issues, and adapts ideas from stochastic geometry and Bayesian finite mixture modelling to construct an ergodic Markov chain having the posterior distribution of the complete col lection of parameters (including the number of factors) as its equilibrium distribution. The proposed method uses an Automatic Relevance Determi nation (ARD) prior as the device of achieving the desired simple structure. A Gibbs sampler updating scheme is then combined with the simulation of a continuous-time birth-and-death point process to produce a sampling scheme that efficiently explores the posterior distribution of interest. The MCMC sample path obtained from the simulated posterior then provides a flexible ingredient for most of the inferential tasks of interest. Illustrations on both artificial and real tasks are provided, while major difficulties and challenges are discussed, along with ideas for future improvements.
A new distribution called the log generalized Lindley-Weibull (LGLW) distribution for modeling lifetime data is proposed. This model further generalizes the Lindley distribution and allows for hazard rate functions that are monotonically decreasing, monotonically increasing and bathtub shaped. A comprehensive investigation and account of the mathematical and statistical properties including moments, moment generating function, simulation issues and entropy are presented. Estimates of model parameters via the method of maximum likelihood are given. Real data examples are presented to illustrate the usefulness and applicability of this new distribution.
Abstract: It is well known that the ordinary least squares (OLS) regression estimator is not robust. Many robust regression estimators have been proposed and inferential methods based on these estimators have been derived. However, for two independent groups, let θj (X) be some conditional measure of location for the jth group, given X, based on some robust regression estimator. An issue that has not been addressed is computing a 1 − confidence interval for θ1(X) − θ2(X) in a manner that allows both within group and between group hetereoscedasticity. The paper reports the finite sample properties of a simple method for accomplishing this goal. Simulations indicate that, in terms of controlling the probability of a Type I error, the method performs very well for a wide range of situations, even with a relatively small sample size. In principle, any robust regression estimator can be used. The simulations are focused primarily on the Theil-Sen estimator, but some results using Yohai’s MM-estimator, as well as the Koenker and Bas sett quantile regression estimator, are noted. Data from the Well Elderly II study, dealing with measures of meaningful activity using the cortisol awakening response as a covariate, are used to illustrate that the choice between an extant method based on a nonparametric regression estimator, and the method suggested here, can make a practical difference.
Abstract: The present paper addresses the propensity to vote with data from the third and fourth rounds of the European Social Survey. The regression of voting propensities on true predictor scores is made possible by estimates of predictor reliabilities (Bechtel, 2010; 2011). This resolves two major problems in binary regression, i.e. errors in variables and imputation errors. These resolutions are attained by a pure randomization theory that incorporates fixed measurement error in design-based regression. This type of weighted regression has long been preferred by statistical agencies and polling organizations for sampling large populations.
We propose a new generator of continuous distributions, so called the transmuted generalized odd generalized exponential-G family, which extends the generalized odd generalized exponential-G family introduced by Alizadeh et al. (2017). Some statistical properties of the new family such as; raw and incomplete moments, moment generating function, Lorenz and Bonferroni curves, probability weighted moments, Rényi entropy, stress strength model and order statistics are investigated. The parameters of the new family are estimated by using the method of maximum likelihood. Two real applications are presented to demonstrate the effectiveness of the suggested family.
Abstract: Fisher’s exact test (FET) is a conditional method that is frequently used to analyze data in a 2 × 2 table for small samples. This test is conservative and attempts have been made to modify the test to make it less conservative. For example, Crans and Shuster (2008) proposed adding more points in the rejection region to make the test more powerful. We provide another way to modify the test to make it less conservative by using two independent binomial distributions as the reference distribution for the test statistic. We compare our new test with several methods and show that our test has advantages over existing methods in terms of control of the type 1 and type 2 errors. We reanalyze results from an oncology trial using our proposed method and our software which is freely available to the reader.