Unit root tests that are in common use today tend to over-reject the stationarity of economic ratios like the consumption-income ratio or rates like the average tax rate. The meaning of a unit root in such bounded series is not very clear. We use a mixed-frequency regression technique to develop a test for the null hypothesis that a series is stationary. The focus is on regression relationships, not so much on individual series. What is noteworthy about this moving average (MA) unit root test, denoted as z(MA) test, based on a variance-difference, is that, instead of having to deal with non-standard distributions, it takes testing back to normal distribution and offers a way to increase power without having to increase the sample size substantially. Monte Carlo simulations show minimal size distortions even when the AR root is close to unity and the test offers substantial gains in power relative to some popular tests against near-null alternatives in moderate size samples. Applying this test to log of consumption-income ratio of 21 OECD countries shows that the z(MA) test favors stationarity of 15 series, KPSS test 8 series, Johansen test 6 series and ADF test 5 series.
Though, fertility is a biological phenomenon but it depends heavily on socioeconomic, demographic and cultural factors; therefore, this article describes a regression technique to estimate the TFR under dierent proposed model assumptionsand the effects of socioeconomic and demographic factors on TFR as well. The developed methodology also leads to estimate the number of births averted due to the use of family planning methods and percent of increase in births in the absence of birth control devices for 29 states of India using three different methods of births aversion through the National Family Health Survey (NFHS-III) data. The finding shows that there is a variation in number of births averted and percent of increase in births in the absence of family planning methods at the state level in India. The effective use of contraception and maximum number of births avoided due to use of family planning is in Maharashtra and Uttar pradesh. Highest percent of increase in births in the absence of contraception is in Himachal Pradesh and Andhra Pradesh
Abstract: In this article, a group acceptance sampling plan (GASP) for lot resubmitting is developed to ensure quality of the product lifetime assuming that the product’s lifetime follows the half logistic distribution. The parameters of the GASP are determined by satifying the specified producer’s and consumer’s risks according to the experiment termination time and the number of testers. A comparison between this proposed group sampling and the ordinary group sampling plan is discussed. This proposed plan is justified with an illustration.
Abstract: In this study, we compared various block bootstrap methods in terms of parameter estimation, biases and mean squared errors (MSE) of the bootstrap estimators. Comparison is based on four real-world examples and an extensive simulation study with various sample sizes, parameters and block lengths. Our results reveal that ordered and sufficient ordered non-overlapping block bootstrap methods proposed by Beyaztas et al. (2016) provide better results in terms of parameter estimation and its MSE compared to conventional methods. Also, sufficient non-overlapping block bootstrap method and its ordered version have the smallest MSE for the sample mean among the others.
Abstract: This paper reviews zero-inflated count models and applies them to modelling annual trends in incidences of occupational allergic asthma, dermatitis and rhinitis in France. Based on the data collected from 2001 to 2009, the study uses the incidence rate ratios (IRR) as percentage of changes in incidences and plots them as function of the years to obtain trends. The investigation reveals that the trend is decreasing for asthma and rhinitis, and increasing for dermatitis, and that there is a possible positive association between the three diseases.
Abstract: PSA measurements are used to assess the risk for prostate cancer. PSA range and PSA kinetics such as PSA velocity have been correlated with in creased cancer detection and assist the clinician in deciding when prostate biopsy should be performed. Our aim is to evaluate the use of a novel, maxi mum likelihood estimation - prostate specific antigen (MLE-PSA) model for predicting the probability of prostate cancer using serial PSA measurements combined with PSA velocity in order to assess whether this reduces the need for prostate biopsy. A total of 1976 Caucasian patients were included. All these patients had at least 6 PSA serial measurements; all underwent trans-rectal biopsy with minimum 12 cores within the past 10 years. A multivariate logistic re gression model was developed using maximum likelihood estimation (MLE) based on the following parameters (age, at least 6 PSA serial measurements, baseline median natural logarithm of the PSA (ln(PSA)) and PSA velocity (ln(PSAV)), baseline process capability standard deviation of ln(PSA) and ln(PSAV), significant special causes of variation in ln(PSA) and ln(PSAV) detected using control chart logic, and the volatility of the ln(PSAV). We then compared prostate cancer probability using MLE-PSA to the results of prostate needle biopsy. The MLE-PSA model with a 50% cut-off probability has a sensitivity of 87%, specificity of 85%, positive predictive value (PPV) of 89%, and negative predictive value (NPV) of 82%. By contrast, a single PSA value with a 4ng/ml threshold has a sensitivity of 59%, specificity of 33%, PPV of 56%, and NPV of 36% using the same population of patients used to generate the MLE-PSA model. Based on serial PSA measurements, the use of the MLE-PSA model significantly (p-value < 0.0001) improves prostate cancer detection and reduces the need for prostate biopsy.
The Topp-Leone distribution is an attractive model for life testing and reliability studies as it acquires a bathtub shaped hazard function. In this paper, we introduce a new family of distributions, depending on Topp–Leone random variable as a generator, called the Type II generalized Topp– Leone–G (TIIGTL-G) family. Its density function can be unimodel, leftskewed, right-skewed, and reversed-J shaped, and has increasing, decreasing, upside-down, J and reversed-J hazard rates. Some special models are presented. Some of its statistical properties are studied. Explicit expressions for the ordinary and incomplete moments, quantile and generating functions, Rényi entropy and order statistics are derived. The method of maximum likelihood is used to estimate the model parameters. The importance of one special model; namely; the Type II generalized Topp–Leone exponential is illustrated through two real data sets.
Abstract: Quick identification of severe injury crashes can help Emergency Medical Services (EMS) better allocate their scarce resources to improve the survival of severely injured crash victims by providing them with a fast and timely response. Data broadcast from a vehicle’s Event Data Recorder (EDR) provide an opportunity to capture crash information and send them to EMS near real-time. A key feature of EDR data is a longitudinal measure of crash deceleration. We used functional data analysis (FDA) to ascertain key features of the deceleration trajectories (absolute integral, absolute in- tegral of its slope, and residual variance) to develop and verify a risk predic- tion model for serious (AIS 3+) injuries. We used data from the 2002-2012 EDR reports and the National Highway and National Automotive Sampling System (NASS) Crashworthiness Data System (CDS) datasets available on the National Transportation Safety Administration (NHTSA) website. We consider a variety of approaches to model deceleration data, including non- penalized and penalized splines and a variable selection method, ultimately obtaining a model with a weighted AUC of 0.93. A novel feature of our approach is the use of residual variance as a measure of predictive risk. Our model can be viewed as an important first step towards developing a real- time prediction model capable of predicting the risk of severe injury in any motor vehicle crash.
istribution of Lindley distribution constructed by combining the cumulative distribution function (cdf) of Lomax and Lindley distributions. Some mathematical properties of the new distribution are discussed including moments, quantile and moment generating function. Estimation of the model parameters is carried out using maximum likelihood method. Finally, real data examples are presented to illustrate the usefulness and applicability of this new distribution.