A new log location-scale regression model with applications to voltage and Stanford heart transplant data sets is presented and studied. The martingale and modified deviance residuals to detect outliers and evaluate the model assumptions are defined. The new model can be very useful in analysing and modeling real data and provides more better fits than other regression models such as the log odd log-logistic generalized half-normal, the log beta generalized half-normal, the log generalized half-normal, the log-Topp-Leone odd log- logistic-Weibull and the log-Weibull models. Characterizations based on truncated moments as well as in terms of the reverse hazard function are presented. The maximum likelihood method is discussed to estimate the model parameters by means of a graphical Monte Carlo simulation study. The flexibility of the new model illustrated by means of four real data sets.
This paper introduces a new three-parameter distribution called inverse generalized power Weibull distribution. This distribution can be regarded as a reciprocal of the generalized power Weibull distribution. The new distribution is characterized by being a general formula for some well-known distributions, namely inverse Weibull, inverse exponential, inverse Rayleigh and inverse Nadarajah-Haghighi distributions. Some of the mathematical properties of the new distribution including the quantile, density, cumulative distribution functions, moments, moments generating function and order statistics are derived. The model parameters are estimated using the maximum likelihood method. The Monte Carlo simulation study is used to assess the performance of the maximum likelihood estimators in terms of mean squared errors. Two real datasets are used to demonstrate the flexibility of the new distribution as well as to demonstrate its applicability.
Analyzing time to event data arises in a number of fields such as Biology and Engineering. A common feature of this data is that, the exact failure time for all units may not be observable. Accordingly, several types of censoring were presented. Progressive censoring allows units to be randomly removed before the terminal point of the experiment. Marshall-Olkin bivariate lifetime distribution was first introduced in 1967 using the exponential distribution. Recently, bivariate Marshall-Olkin Kumaraswamy lifetime distribution was derived. This paper derives the likelihood function under progressive type-I censoring for the bivariate Marshall-Olkin family in general and applies it on the bivariate Kumaraswamy lifetime distribution. Maximum likelihood estimators of model parameters were derived. Simulation study and a real data set are presented to illustrate the proposed procedure. Absolute bias, mean square error, asymptotic confidence intervals, confidence width and coverage probability are obtained. Simulation results indicate that the mean square error is smaller and confidence width is narrower and more precise when number of removals gets smaller. Also, increasing the terminal point of the experiment results in reducing the mean square error and confidence width.
Abstract. Unemployment is one of the most important issues in macro economics. Unemployment creates many economic and social problems in the economy. The condition and qualification of labor force in a country show economical developments. In the light of these facts, a developing country should overcome the problem of unemployment. In this study, the performance of robust biased Robust Ridge Regression (RRR), Robust Principal Component Regression (RPCR) and RSIMPLS methods are compared with each other and their classical versions known as Ridge Regression (RR), Principal Component Regression (PCR) and Partial Least Squares Regression (PLSR) in terms of predictive ability by using trimmed Root Mean Squared Error (TRMSE) statistic in case of both of multicollinearity and outliers existence in an unemployment data set of Turkey. Analysis results show that RRR model is chosen as the best model for determining unemployment rate in Turkey for the period of 1985-2012. Robust biased RRR method showed that the most important independent variable effecting the unemployment rate is Purchasing Power Parities (PPP). The least important variables effecting the unemployment rate are Import Growth Rate (IMP) and Export Growth Rate (EXP). Hence, any increment in PPP cause an important increment in unemployment rate, however, any increment in IMP causes an unimportant increase in unemployment rate. Any increment in EXP causes an unimportant decrease in unemployment rate.
Abstract: A new distribution, called Odds Generalized Exponential-Exponential distribution (OGEED) is proposed for modeling lifetime data. A comprehensive account of the mathematical properties of the new distribution including estimation and simulation issues is presented. A data set has been analyzed to illustrate its applicability.
Abstract: support vector machines (SVMs) constitute one of the most popular and powerful classification methods. However, SVMs can be limited in their performance on highly imbalanced datasets. A classifier which has been trained on an imbalanced dataset can produce a biased model towards the majority class and result in high misclassification rate for minority class. For many applications, especially for medical diagnosis, it is of high importance to accurately distinguish false negative from false positive results. The purpose of this study is to successfully evaluate the performance of a classifier, keeping the correct balance between sensitivity and specificity, in order to enable the success of trauma outcome prediction. We compare the standard (or classic) SVM (C SVM) with resampling methods and a cost sensitive method, called Two Cost SVM (TC SVM), which constitute widely accepted strategies for imbalanced datasets and the derived results were discussed in terms of the sensitivity analysis and receiver operating characteristic (ROC) curves.
In this article, a new family of lifetime distributions by adding an additional parameter to the existing distributions is introduced. The new family is called, the extended alpha power transformed family of distributions. For the proposed family, explicit expressions for some mathematical properties along with estimation of parameters through Maximum likelihood Method are discussed. A special sub-model, called the extended alpha power transformed Weibull distribution is considered in detail. The proposed model is very flexible and can be used to model data with increasing, decreasing or bathtub shaped hazard rates. To access the behavior of the model parameters, a small simulation study has also been carried out. For the new family, some useful characterizations are also presented. Finally, the potentiality of the proposed method is showen via analyzing two real data sets taken from reliability engineering and bio-medical fields.
In this paper, we introduce a new family of univariate distributions with two extra positive parameters generated from inverse Weibull random variable called the inverse Weibull generated (IW-G) family. The new family provides a lot of new models as well as contains two new families as special cases. We explore four special models for the new family. Some mathematical properties of the new family including quantile function, ordinary and incomplete moments, probability weighted moments, Rѐnyi entropy and order statistics are derived. The estimation of the model parameters is performed via maximum likelihood method. Applications show that the new family of distributions can provide a better fit than several existing lifetime models.
In this paper, we introduce a new family of continuous distributions called the transmuted Topp-Leone G family which extends the transmuted class pioneered by Shaw and Buckley (2007). Some of its mathematical properties including probability weighted moments, mo- ments, generating functions, order statistics, incomplete moments, mean deviations, stress- strength model, moment of residual and reversed residual life are studied. Some useful char- acterizations results based on two truncated moments as well as based on hazard function are presented. The maximum likelihood method is used to estimate its parameters. The Monte Carlo simulation is used for assessing the performance of the maximum likelihood estimators. The usefulness of the new model is illustrated by means of two real data set.
Abstract: This paper develops a generalized least squares (GLS) estimator in a linear regression model with serially correlated errors. In particular, the asymptotic optimality of the proposed estimator is established. To obtain this result, we use the modified Cholesky decomposition to estimate the inverse of the error covariance matrix based on the ordinary least squares (OLS) residuals. The resulting matrix estimator maintains positive definite ness and converges to the corresponding population matrix at a suitable rate. The outstanding finite sample performance of the proposed GLS estimator is illustrated using simulation studies and two real datasets.