Abstract: In this paper, we introduce a Bayesian analysis for bivariate geometric distributions applied to lifetime data in the presence of covariates, censored data and cure fraction using Markov Chain Monte Carlo (MCMC) methods. We show that the use of a discrete bivariate geometric distribution could bring us some computational advantages when compared to standard existing bivariate exponential lifetime distributions introduced in the literature assuming continuous lifetime data as for example, the exponential Block and Basu bivariate distribution. Posterior summaries of interest are obtained using the popular OpenBUGS software. A numerical illustration is introduced considering a medical data set related to the analysis of a diabetic retinopathy data set.
Abstract: Ranked set sampling and some of its variants have been applied successfully in different areas of applications such as industrial statistics, economics, environmental and ecological studies, biostatistics, and statistical genetics. Ranked set sampling is a sampling method that more efficient than simple random sampling. Also, it is well known that Fisher information of a ranked set sample (RSS) is larger than Fisher information of a simple random sample (SRS) of the same size about the unknown parameter of the underlying distribution in parametric inference. In this paper, we consider the Farlie-Gumbel-Morgenstern (FGM) family and study the information measures such as Shannon’s entropy, Rényi entropy, mutual information, and Kullback-Leibler (KL) information of RSS data. Also, we investigate their properties and compare them with a SRS data.
The odd inverse Pareto-Weibull distribution is introduced as a new lifetime distribution based on the inverse Pareto and the T-X family. Some mathematical properties of the new distribution are studied. The method of maximum likelihood is used for estimating the model parameters and the observed Fisher’s information matrix is derived. The importance and flexibility of the proposed model are assessed using a real data.
A new log location-scale regression model with applications to voltage and Stanford heart transplant data sets is presented and studied. The martingale and modified deviance residuals to detect outliers and evaluate the model assumptions are defined. The new model can be very useful in analysing and modeling real data and provides more better fits than other regression models such as the log odd log-logistic generalized half-normal, the log beta generalized half-normal, the log generalized half-normal, the log-Topp-Leone odd log- logistic-Weibull and the log-Weibull models. Characterizations based on truncated moments as well as in terms of the reverse hazard function are presented. The maximum likelihood method is discussed to estimate the model parameters by means of a graphical Monte Carlo simulation study. The flexibility of the new model illustrated by means of four real data sets.
This paper introduces a new three-parameter distribution called inverse generalized power Weibull distribution. This distribution can be regarded as a reciprocal of the generalized power Weibull distribution. The new distribution is characterized by being a general formula for some well-known distributions, namely inverse Weibull, inverse exponential, inverse Rayleigh and inverse Nadarajah-Haghighi distributions. Some of the mathematical properties of the new distribution including the quantile, density, cumulative distribution functions, moments, moments generating function and order statistics are derived. The model parameters are estimated using the maximum likelihood method. The Monte Carlo simulation study is used to assess the performance of the maximum likelihood estimators in terms of mean squared errors. Two real datasets are used to demonstrate the flexibility of the new distribution as well as to demonstrate its applicability.
Analyzing time to event data arises in a number of fields such as Biology and Engineering. A common feature of this data is that, the exact failure time for all units may not be observable. Accordingly, several types of censoring were presented. Progressive censoring allows units to be randomly removed before the terminal point of the experiment. Marshall-Olkin bivariate lifetime distribution was first introduced in 1967 using the exponential distribution. Recently, bivariate Marshall-Olkin Kumaraswamy lifetime distribution was derived. This paper derives the likelihood function under progressive type-I censoring for the bivariate Marshall-Olkin family in general and applies it on the bivariate Kumaraswamy lifetime distribution. Maximum likelihood estimators of model parameters were derived. Simulation study and a real data set are presented to illustrate the proposed procedure. Absolute bias, mean square error, asymptotic confidence intervals, confidence width and coverage probability are obtained. Simulation results indicate that the mean square error is smaller and confidence width is narrower and more precise when number of removals gets smaller. Also, increasing the terminal point of the experiment results in reducing the mean square error and confidence width.
Abstract. Unemployment is one of the most important issues in macro economics. Unemployment creates many economic and social problems in the economy. The condition and qualification of labor force in a country show economical developments. In the light of these facts, a developing country should overcome the problem of unemployment. In this study, the performance of robust biased Robust Ridge Regression (RRR), Robust Principal Component Regression (RPCR) and RSIMPLS methods are compared with each other and their classical versions known as Ridge Regression (RR), Principal Component Regression (PCR) and Partial Least Squares Regression (PLSR) in terms of predictive ability by using trimmed Root Mean Squared Error (TRMSE) statistic in case of both of multicollinearity and outliers existence in an unemployment data set of Turkey. Analysis results show that RRR model is chosen as the best model for determining unemployment rate in Turkey for the period of 1985-2012. Robust biased RRR method showed that the most important independent variable effecting the unemployment rate is Purchasing Power Parities (PPP). The least important variables effecting the unemployment rate are Import Growth Rate (IMP) and Export Growth Rate (EXP). Hence, any increment in PPP cause an important increment in unemployment rate, however, any increment in IMP causes an unimportant increase in unemployment rate. Any increment in EXP causes an unimportant decrease in unemployment rate.
Abstract: A new distribution, called Odds Generalized Exponential-Exponential distribution (OGEED) is proposed for modeling lifetime data. A comprehensive account of the mathematical properties of the new distribution including estimation and simulation issues is presented. A data set has been analyzed to illustrate its applicability.
Abstract: support vector machines (SVMs) constitute one of the most popular and powerful classification methods. However, SVMs can be limited in their performance on highly imbalanced datasets. A classifier which has been trained on an imbalanced dataset can produce a biased model towards the majority class and result in high misclassification rate for minority class. For many applications, especially for medical diagnosis, it is of high importance to accurately distinguish false negative from false positive results. The purpose of this study is to successfully evaluate the performance of a classifier, keeping the correct balance between sensitivity and specificity, in order to enable the success of trauma outcome prediction. We compare the standard (or classic) SVM (C SVM) with resampling methods and a cost sensitive method, called Two Cost SVM (TC SVM), which constitute widely accepted strategies for imbalanced datasets and the derived results were discussed in terms of the sensitivity analysis and receiver operating characteristic (ROC) curves.
In this article, a new family of lifetime distributions by adding an additional parameter to the existing distributions is introduced. The new family is called, the extended alpha power transformed family of distributions. For the proposed family, explicit expressions for some mathematical properties along with estimation of parameters through Maximum likelihood Method are discussed. A special sub-model, called the extended alpha power transformed Weibull distribution is considered in detail. The proposed model is very flexible and can be used to model data with increasing, decreasing or bathtub shaped hazard rates. To access the behavior of the model parameters, a small simulation study has also been carried out. For the new family, some useful characterizations are also presented. Finally, the potentiality of the proposed method is showen via analyzing two real data sets taken from reliability engineering and bio-medical fields.