Bayesian methods provide direct uncertainty quantification in functional data analysis applications without reliance on bootstrap techniques. A major tool in functional data applications is the functional principal component analysis which decomposes the data around a common mean function and identifies leading directions of variation. Bayesian functional principal components analysis (BFPCA) provides uncertainty quantification on the estimated functional model components via the posterior samples obtained. We propose central posterior envelopes (CPEs) for BFPCA based on functional depth as a descriptive visualization tool to summarize variation in the posterior samples of the estimated functional model components, contributing to uncertainty quantification in BFPCA. The proposed BFPCA relies on a latent factor model and targets model parameters within a hierarchical modeling framework using modified multiplicative gamma process shrinkage priors on the variance components. Functional depth provides a center-outward order to a sample of functions. We utilize modified band depth and modified volume depth for ordering of a sample of functions and surfaces, respectively, to derive at CPEs of the mean and eigenfunctions within the BFPCA framework. The proposed CPEs are showcased in extensive simulations. Finally, the proposed CPEs are applied to the analysis of a sample of power spectral densities from resting state electroencephalography where they lead to novel insights on diagnostic group differences among children diagnosed with autism spectrum disorder and their typically developing peers across age.
Pub. online:12 Jan 2023Type:Computing In Data ScienceOpen Access
Journal:Journal of Data Science
Volume 21, Issue 2 (2023): Special Issue: Symposium Data Science and Statistics 2022, pp. 281–294
Abstract
How do statistical regression results compare to intuitive, visually fitted results? Fitting lines by eye through a set of points has been explored since the 20th century. Common methods of fitting trends by eye involve maneuvering a string, black thread, or ruler until the fit is suitable, then drawing the line through the set of points. In 2015, the New York Times introduced an interactive feature, called ‘You Draw It,’ where readers are asked to input their own assumptions about various metrics and compare how these assumptions relate to reality. This research is intended to implement ‘You Draw It’, adapted from the New York Times, as a way to measure the patterns we see in data. In this paper, we describe the adaptation of an old tool for graphical testing and evaluation, eye-fitting, for use in modern web-applications suitable for testing statistical graphics. We present an empirical evaluation of this testing method for linear regression, and briefly discuss an extension of this method to non-linear applications.
This paper introduces flowthrough centrality, a node centrality measure determined from the hierarchical maximum concurrent flow problem (HMCFP). Based upon the extent to which a node is acting as a hub within a network, this centrality measure is defined to be the fraction of the flow passing through the node to the total flow capacity of the node. Flowthrough centrality is compared to the commonly-used centralities of closeness centrality, betweenness centrality, and flow betweenness centrality, as well as to stable betweenness centrality to measure the stability (i.e., accuracy) of the centralities when knowledge of the network topology is incomplete or in transition. Perturbations do not alter the flowthrough centrality values of nodes that are based upon flow as much as they do other types of centrality values that are based upon geodesics. The flowthrough centrality measure overcomes the problem of overstating or understating the roles that significant actors play in social networks. The flowthrough centrality is canonical in that it is determined from a natural, realized flow universally applicable to all networks.
Pub. online:21 Dec 2022Type:Data Science In ActionOpen Access
Journal:Journal of Data Science
Volume 21, Issue 2 (2023): Special Issue: Symposium Data Science and Statistics 2022, pp. 239–254
Abstract
The 2020 Census County Assessment Tool was developed to assist decennial census data users in identifying deviations between expected census counts and the released counts across population and housing indicators. The tool also offers contextual data for each county on factors which could have contributed to census collection issues, such as self-response rates and COVID-19 infection rates. The tool compiles this information into a downloadable report and includes additional local data sources relevant to the data collection process and experts to seek more assistance.
Pub. online:15 Dec 2022Type:Data Science In ActionOpen Access
Journal:Journal of Data Science
Volume 21, Issue 2 (2023): Special Issue: Symposium Data Science and Statistics 2022, pp. 193–204
Abstract
Many small and rural places are shrinking. Interactive dashboards are the most common use cases for data visualization and context for exploratory data tools. In our paper, we will use Iowa data to explore the specific scope of how dashboards are used in small and rural area to empower novice analysts to make data-driven decisions. Our framework will suggest a number of research directions to better support small and rural places from shrinking using an interactive dashboard design, implementation and use for the every day analyst.
We assessed the impact of the coronavirus disease 2019 (COVID-19) pandemic on the statistical analysis of time-to-event outcomes in late-phase oncology trials. Using a simulated case study that mimics a Phase III ongoing trial during the pandemic, we evaluated the impact of COVID-19-related deaths, time off-treatment and missed clinical visits due to the pandemic, on overall survival and/or progression-free survival in terms of test size (also referred to as Type 1 error rate or alpha level), power, and hazard ratio (HR) estimates. We found that COVID-19-related deaths would impact both size and power, and lead to biased HR estimates; the impact would be more severe if there was an imbalance in COVID-19-related deaths between the study arms. Approaches censoring COVID-19-related deaths may mitigate the impact on power and HR estimation, especially if study data cut-off was extended to recover censoring-related event loss. The impact of COVID-19-related time off-treatment would be modest for power, and moderate for size and HR estimation. Different rules of censoring cancer progression times result in a slight difference in the power for the analysis of progression-free survival. The simulations provided valuable information for determining whether clinical-trial modifications should be required for ongoing trials during the COVID-19 pandemic.
Pub. online:5 Dec 2022Type:Statistical Data ScienceOpen Access
Journal:Journal of Data Science
Volume 21, Issue 3 (2023): Special Issue: Advances in Network Data Science, pp. 490–507
Abstract
International trade research plays an important role to inform trade policy and shed light on wider economic issues. With recent advances in information technology, economic agencies distribute an enormous amount of internationally comparable trading data, providing a gold mine for empirical analysis of international trade. International trading data can be viewed as a dynamic transport network because it emphasizes the amount of goods moving across network edges. Most literature on dynamic network analysis concentrates on parametric modeling of the connectivity network that focuses on link formation or deformation rather than the transport moving across the network. We take a different non-parametric perspective from the pervasive node-and-edge-level modeling: the dynamic transport network is modeled as a time series of relational matrices; variants of the matrix factor model of Wang et al. (2019) are applied to provide a specific interpretation for the dynamic transport network. Under the model, the observed surface network is assumed to be driven by a latent dynamic transport network with lower dimensions. Our method is able to unveil the latent dynamic structure and achieves the goal of dimension reduction. We applied the proposed method to a dataset of monthly trading volumes among 24 countries (and regions) from 1982 to 2015. Our findings shed light on trading hubs, centrality, trends, and patterns of international trade and show matching change points to trading policies. The dataset also provides a fertile ground for future research on international trade.
Pub. online:23 Nov 2022Type:Data Science In ActionOpen Access
Journal:Journal of Data Science
Volume 21, Issue 2 (2023): Special Issue: Symposium Data Science and Statistics 2022, pp. 177–192
Abstract
Clinical risk prediction models are commonly developed in a post-hoc and passive fashion, capitalizing on convenient data from completed clinical trials or retrospective cohorts. Impacts of the models often end at their publication rather than with the patients. The field of clinical risk prediction is rapidly improving in a progressively more transparent data science era. Based on collective experience over the past decade by the Prostate Biopsy Collaborative Group (PBCG), this paper proposes the following four data science-driven strategies for improving clinical risk prediction to the benefit of clinical practice and research. The first proposed strategy is to actively design prospective data collection, monitoring, analysis and validation of risk tools following the same standards as for clinical trials in order to elevate the quality of training data. The second suggestion is to make risk tools and model formulas available online. User-friendly risk tools will bring quantitative information to patients and their clinicians for improved knowledge-based decision-making. As past experience testifies, online tools expedite independent validation, providing helpful information as to whether the tools are generalizable to new populations. The third proposal is to dynamically update and localize risk tools to adapt to changing demographic and clinical landscapes. The fourth strategy is to accommodate systematic missing data patterns across cohorts in order to maximize the statistical power in model training, as well as to accommodate missing information on the end-user side too, in order to maximize utility for the public.
Pub. online:9 Nov 2022Type:Statistical Data ScienceOpen Access
Journal:Journal of Data Science
Volume 20, Issue 4 (2022): Special Issue: Large-Scale Spatial Data Science, pp. 566–584
Abstract
The article presents a methodology for supervised regionalization of data on a spatial domain. Defining a spatial process at multiple scales leads to the famous ecological fallacy problem. Here, we use the ecological fallacy as the basis for a minimization criterion to obtain the intended regions. The Karhunen-Loève Expansion of the spatial process maintains the relationship between the realizations from multiple resolutions. Specifically, we use the Karhunen-Loève Expansion to define the regionalization error so that the ecological fallacy is minimized. The contiguous regionalization is done using the minimum spanning tree formed from the spatial locations and the data. Then, regionalization becomes similar to pruning edges from the minimum spanning tree. The methodology is demonstrated using simulated and real data examples.