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Abstract: In voting rights cases, judges often infer unobservable individ-
ual vote choices from election data aggregated at the precinct level. That is,
one must solve an ill-posed inverse problem to obtain the critical information
used in these cases. The ill-posed nature of the problem means that tradi-
tional frequentist and Bayesian approaches cannot be employed without first
imposing a range of assumptions. In order to mitigate the problems result-
ing from incorporating potentially inaccurate information in these cases, we
propose the use of information theoretic methods as a basis for recovering
an estimate of the unobservable individual vote choices. We illustrate the
empirical non-parametric likelihood methods with some election data.
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1. Introduction

Forty years ago, Congress passed the landmark Voting Rights Act (VRA) in a
monumental effort to safeguard and protect the voting rights of all U.S. citizens,
regardless of race or color. Indeed, soon after passage of the VRA, black voter
registration increased sharply. Although the VRA has been called the single
most effective piece of civil rights legislation ever passed by Congress, significant
issues of enforcement remain. One particular problem occurs repeatedly after the
decennial redistricting when minority advocacy groups invariably find districts
they claim are in violation of the VRA because they do not allow minorities to
elect the representative of their choice.

Since these are legal claims, the judge is the final arbiter. He must decide
whether minority voting strength has been diluted so that minorities are not
able to elect the representative of their choice. To rule in vote dilution cases,
the judge must have an estimate of the unobservable relative proportions of each
racial group that voted for each candidate in the district where only the total
numbers in each racial group and the total votes won by each candidate are
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known. Thus, the secret ballot poses an obvious difficulty, since we can never
know with certainty how a particular voter or group of voters voted. Instead,
we have only aggregated election returns and census data on racial composition
for areal units as a basis for inferences about the individual-level behavior. In
order to recover estimates of the unobservable quantities of interest, we must use
indirect aggregate data. This results in an ill-posed pure inverse problem that is
commonly known as the ecological inference problem (Goodman, 1953). Judges
confronted with this problem cannot simply shrug off the considerable difficulties
of ecological inference. They must somehow choose between competing accounts
that likely feature different theories, models, and estimates. The stakes, likewise,
are high, demonstrating the enormous role that model formation, estimation, and
inference play in defining democracy in the United States.

The formulations are recognized as inverse problems because one must use
indirect observations to recover information about the focus of interest, the un-
observables. The problem is ill-posed or underdetermined because there are more
unknowns than data points and thus insufficient information to solve the prob-
lem uniquely. These considerations suggest that these types of ecological infer-
ence problems that define the issues in such areas as Voting Rights cases are
not amenable to frequentist and Bayesian estimation and inference procedures
without the imposition of strong assumptions.

In this paper, we demonstrate an information-theoretic basis for information
recovery in problems for ecological inference that has the virtue that it rests on a
family of minimum distance criterion functions including empirical likelihood and
maximum entropy principles. These methods are especially useful to process and
recover information when the only available data are partial and incomplete. Tra-
ditional attempts to solve the ecological inference problem in a sampling theory
and Bayesian context are illustrated by (Goodman, 1953, Goodman, 1959, King,
1997, Wakefield, 2004). Goodman (1953, 1959) assumes a sampling framework
and converts the ill-posed problem to a well-posed inverse problem with noise.
Each of these distinct models impose questionable assumptions and so share the
statistical and social consequences of imposing strong and possibly incorrect as-
sumptions. Building on the creative efforts of these and others, we focus on the
informational content of the data, acknowledge the inherent uncertainty of the
problem, and employ empirical non-parametric likelihood methods that minimize
the use of information that a researcher does not possess.

We proceed as follows. First, using only the available aggregate election
returns, we demonstrate how to formulate voting rights cases as a pure ill-posed
inverse problem. Next, we show how information theoretic procedures provide
a basis for recovering estimates of vote choice. We then demonstrate how our
approach is especially useful in VRA cases where judges often insist on a point
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estimate to guide their decision making on a micro-precinct basis. Finally, we
conclude with a discussion of generalizations that are a basis of current research.

2. Statement of the Problem

We may formalize the problem in voting rights cases as follows. Consider the
observed outcomes for a particular election across i = 1, . . . ,m electoral units
(e.g., precincts, parishes, districts, etc.). Each unit has j = 1, . . . , g types of
individual voters and k = 1, . . . , c candidates for office (which may include an
abstention category). Assume without loss of generality that the election units
are precincts. For each precinct, the observed information is the number of votes
each candidate received, Ni·k =

∑g
j=1 Nijk, and the number of voters in each

group, Nij· =
∑c

k=1 Nijk. The total number of ballots cast in the precinct is
Ni =

∑g
j=1

∑c
k=1 Nijk. Because of the secret ballot, the total number of votes

cast by each group for particular candidates in the election is unknown and
unobserved. Given the observed data, our initial objective is to formulate a pure
inverse model that will permit us to estimate Nijk, the unobserved number of
votes cast in precinct i by voters of type j for candidate k, from the aggregated
election returns.

Table 1: Known and Unknown Components in Voting Rights Cases

Canidate 1 2 3 4 Count

Group 1 p11N1· p12N1· p13N1· p14N1· N1·
Group 2 p21N2· p22N2· p23N2· p24N2· N2·
Group 3 p31N3· p32N3· p33N3· p34N3· N3·

N·1 N·2 N·3 N·4 N

Our data may be expressed in terms of the observed row or column propor-
tions. That is, for precinct i, ni·k = Ni·k/Ni or nij· = Nij·/Ni. The pure inverse
problem may be equivalently stated in terms of the proportion of voters in each
category, pijk = Nijk/Nij· = nijk/nij·, where

∑c
k=1 pijk = 1 for each i and j. In

this context, pijk is the conditional probability that voters in precinct i and group
j voted for candidate k, where the conditioning indices are i and j. Table 1 il-
lustrates the problem for a single precinct. Given the information in the margins
of Table 1, we wish to recover the information in the cells of the Table. In the
Voting Rights arena, the index j represents racial groups, and attention may be
directed chiefly at black versus non-black voting behavior. The objective in these
cases is to estimate the conditional probability that a voter selected candidate k
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given that he is a member of racial group j.1 Given the observed data and the
unknown and unobservable parameters for the problem may be summarized in
the form of a contingency table, where the observable aggregate data are reflected
in row and column sums and the unknown or unobservable data are the condi-
tional probabilities in the interior cells of the table (see Good, 1963, Gokhale and
Kullback, 1978).

2.1 Modeling voting behavior as an ill-posed pure inverse problem

Consider Table 1 where the observed number of ballots cast by registered
voters in each group (Nj·) are the row sums, and the observed number of votes
received by each candidate (N·k) are the column sums. What we do not know and
cannot observe is the number of votes cast by each group, Njk, or the proportion of
votes cast by each group for each candidate, njk. If the conditional probabilities,
pjk, were known, we could derive the unknown number of voters as Njk = pjkNj·.
However, because the conditional probabilities are unobserved and not accessible
by direct measurement, we are faced with an inverse problem where we must use
aggregate data to recover the unknown conditional probabilities.

Some structure is provided by the realization that the conditional probabil-
ities, pjk, must satisfy the additivity condition,

∑c
k=1 pjk = 1, and the column

sum conditions,
∑g

j=1 pjkNj· = N·k. The column sum conditions give us the
relationship

ni·k =
g∑

j=1

nij·pijk ,

for i = 1, . . . ,m and k = 1, . . . , c. To formalize our notation, we let x(i) =
(ni1· ni2· · · · nig·)′ represent the (g×1) vector of proportions for each of the voter
groups j = 1, . . . , g in precinct i, and let y(i) = (ni·1 ni·2 · · · ni·c)′ represent the
(c × 1) vector of vote proportions for each candidate k = 1, . . . , c, in precinct i.
Then, the relationship among the observed marginal proportions and unknown
conditional probabilities may be written as

y′(i) = x′(i)P(i) . (2.1)

The component P(i) = (pi1 pi2 · · · pic) is an unknown and unobservable (g× c)
matrix of conditional probabilities and pik = (pi1k pi2k · · · pigk)

′ is the (g×1) vec-
tor of conditional probabilities associated with precinct i, and candidate k. If we

1It is important to note that, for expository purposes, we have organized the data into a
3 × 4 table. Our interest is in the general r × c case where r and c are not restricted. This is
a departure from much of the previous applied work in this area, which has revolved around
problems that are definable by a 2× 2 table. That limitation is unduly restrictive and, for most
real-world situations, unrealistic.
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rewrite P(i) in (gc × 1) vectorized form as p(i) = vec(P(i)) = (p′
i1 p′

i2 · · · p′
ic)

′,
then we may, in the case of m precincts, rewrite (2.1) as

y(1)
y(2)

...
y(m)

 =


x′(1) 0 · · · 0

0 x′(2) · · · 0
...

...
. . .

...
0 0 · · · x′(m)




p(1)
p(2)

...
p(m)

 (2.2)

or in compact form as
y = Xp. (2.3)

We interpret (2.1) as a framework for information recovery at the precinct
level and (2.2) as a framework for a set of precincts, such as a congressional
district. The formulations in (2.1) and (2.2) connecting the unknown and un-
observable voter proportions are in the form of pure ill-posed inverse problems.
Given inverse problems (2.1) or (2.3), y = Xβ, where y = (y1, y2, . . . , yk) is a
finite-dimensional observation vector, X is a known linear operator that is non-
invertible, and β is an unknown high-dimensional parameter vector. The inverse
problem is to recover the unobservable βis based on the observations, y and X.
This general formulation captures a frequently occurring problem where a func-
tion must be inferred from insufficient information that specifies only a feasible or
plausible set of functions or solutions. In other words, this is a pure ill-posed in-
verse problem that is fundamentally underdetermined and indeterminate because
there are more unknown and unobservable parameters than data points on which
to base a solution. Consequently, prima facie, insufficient sample information
exists to solve the problem using traditional rules of logic.

3. Information Theoretic Formulation and Solution

The two basic components needed to implement the model of voting behavior
introduced in Section 2 are the data and a criterion or objective function. In VRA
cases, we have already discussed the issues surrounding the first component, data.
At this juncture, many have chosen to apply sampling theory or Bayesian crite-
ria such as a maximum likelihood or least squares as a basis for estimation and
inference. We diverge from this common course because, given the ill-posed pure
inverse nature of the information recovery problem, these frameworks are not ap-
plicable without the imposition of a large number of strong assumptions. Instead,
within the nature of our conditional probability recovery problem, we integrate
the notion of relative entropy or Kullback-Leibler divergence (see Jumarie, 1990).
Our method highlights the information theory contributions of Claude Shannon
(1948, 1949). Shannon began with an entropy measure of uncertainty in a random
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variable Y assuming a finite number of values, y1, y2, . . . , yn, with probabilities,
p1, p2, . . . , pn. He then defined the uncertainty or information, H(Y ), in Y as

−H(Y ) = p1 log p1 + · · · + pn log pn (3.1)

Interestingly, Shannon’s information theory does not deal with information per
se but with data—the raw material from which information is obtained.

A far reaching generalization of Shannon’s Theory is the maximum entropy
principle enunciated by (Jaynes, 1957). The maximum entropy (MaxEnt) prin-
ciple or criterion favors, out of all distributions consistent with a given set of
constraints (data), the distribution that maximizes entropy. Together, informa-
tion theory and the MaxEnt principle provide a basis for the investigation of
all types of systems without the need to understand the relations underlying
the probabilities. Note that the MaxEnt principle or criterion is a member of the
Cressie-Read (1984, 1988) family of minimum divergence distance measures. The
Cressie-Read power-divergence (CR) statistic (Cressie and Read, 1984; Read and
Cressie, 1988; Baggerly, 1998)

I(p,q, λ) =
2

λ(1 + λ)

∑
i

pi

[(
pi

qi

)λ

− 1

]
, (3.2)

provides a distance or discrepancy measure between p (i.e., the conditional prob-
abilities in our problem) and a set of reference weights q. The discrete weights
must satisfy (pi, qi) ∈ (0, 1) × (0, 1) ∀ i and

∑
i pi =

∑
i qi = 1, conditional on

the choice of λ. The CR distance measure (3.2) encompasses a family of ob-
jective functions that includes the Kullback-Leibler cross-entropy,

∑
pi ln(pi/qi)

(Kullback, 1959; Gokhale and Kullback, 1978), the Shannon entropy functional,
−∑ pi ln(pi) (Jaynes, 1957), the empirical likelihood criterion,

∑
ln(pi) (Burg,

1967; Owen, 1988; Owen, 1990), and the log Euclidean measure,
∑

i(p
2
i − 1). A

natural default for these reference weights in the absence of auxiliary informa-
tion, Laplaces’s principle of insufficient reason, is a uniform distribution. For a
more complete discussion of the CR statistic and corresponding family of criterion
function, see Mittelhammer, Judge and Miller (2000).

In the formulations and analyses to follow, we make use of the Shannon/Jaynes
entropy criterion, −∑ pi log(pi). In this case, given data in the form of (2.1) or
(2.3), we seek estimates of the conditional probabilities, pij, that maximize (3.1)
subject to (2.1) or (2.3) and the additivity and column sum conditions. Note that
probabilities are, by definition, nonnegative, and this nonnegativity condition is
seamlessly fulfilled in our model since the probabilities are expressed as an expo-
nential function of the parameters and data. The maximum entropy criterion is
an appealing solution for two reasons. First, it embodies a minimum number of
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assumptions and is thus an instance of the principle of Occam’s razor, i.e. it seeks
to avoid extraneous information that might introduce inconsistencies, biases, am-
biguities, or redundancies. Second, it produces a maximum multiplicity solution,
which means that the resulting estimate is the set of conditional probabilities
consistent with our data constraints that can be realized in the greatest number
of ways. In any estimation and inference problem, it is crucial to be able to sep-
arate the role that the sample information plays from the role that the statistical
model specification plays in determining the results. The ability to do this is one
of the particular appeals of the MaxEnt approach. In the formulations ahead, our
focus is on recovering point estimates of the unknown conditional probabilities.

3.1 The MaxEnt voter response formulation

Typically, the only available information in the voter response problem is the
data contained in the margins of Table 1. If we make use of this aggregate infor-
mation, under the Kullback-Leibler (following Shannon and Jaynes) estimation
criterion, the pure inverse model (2.1)–(2.3) may be formulated as

arg min
pijk

m∑
i=1

g∑
j=1

c∑
k=1

pijkln (pijk/qijk) , (3.3)

subject to the column-sum condition,

ni·k =
g∑

j=1

nij·pijk (3.4)

and the additivity condition,

c∑
k=1

pijk = 1 ∀ i, j . (3.5)

In this way, the problem is simply stated as a constrained minimization problem
that minimizes the distance between the estimated pijk and qijk, a reference
distribution. If we are agnostic, the conventional choice of qijk, and the one
we employ, is the uniform distribution. Obviously, depending on the external
knowledge base, other fixed or random qijk may serve as the reference distribution.
Note that the statement of the pure inverse problem, in an extreme context,
involves three components: the goodness-of-fit measure (3.3), the data constraint
(2.1) or (2.3) in the form of (3.4), and the additivity condition (3.5).

The Lagrangian function for the constrained minimization problem expressed
in (3.3)–(3.5) is
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L(p,q,α,γ) =
m∑

i=1

g∑
j=1

c∑
k=1

pijkln (pijk/qijk) −

m∑
i=1

c∑
k=1

αik

ni·k −
g∑

j=1

nij·pijk

−
m∑

i=1

g∑
j=1

γij

(
c∑

k=1

pijk − 1

)
,

where α is the Lagrange multiplier for constraint (3.4) and γ is the Lagrange
multiplier for constraint (3.5). The solution of the first-order condition leads to
the following expression for the conditional probabilities

p̂ijk =
qijk exp (α̂iknij·)∑c

k=1 qijk exp (α̂iknij·)
. (3.6)

In general, this solution does not have a closed-form expression, and the optimal
values of the unknown parameters must be numerically determined.

If non-sample information exists about the conditional probabilities, pijk, this
information can be introduced through the reference weights, qijk. As noted
above, if non-sample information concerning the unknown conditional probabili-
ties does not exist, then we use the uniform reference weights, qijk = c−1, where
c is the number of candidates. In the case of uniform reference weights, the
criterion function is

arg min
pijk

m∑
i=1

g∑
j=1

c∑
k=1

pijk ln(pijk) , (3.7)

and the solution is
p̂ijk =

exp (α̂iknij·)∑c
k=1 exp (α̂iknij·)

. (3.8)

The formulation (3.8) above avoids introducing any additional information that
is not explicitly contained in the data. If the data constraint is omitted, uniform
pijk estimates result and provide the maximum entropy solution. Alternatively, in
the context of (2.1) or (2.3), the function (3.7) is minimized subject to constraints
imposed by the data and the additivity condition. An illustration of the solution
process is given in Appendix B.

4. Empirical Results

Using election returns from the race for the 5th congressional seat in Louisiana
in the 2000 election year, we will now demonstrate that our information theoretic
methods may be used in reasoning through difficult VRA cases. In November
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2000, Republican incumbent John Cooksey won the 5th district with 69% of the
vote, against three Democrats who took 24%, 4%, and 3%, respectively. The
district was about 65% white and 33% black, with very small Asian, Hispanic
and mixed-race populations. We know what proportion of the vote each candi-
date received and the racial proportions of the electorate, and we would like to
determine how the vote for a given candidate broke down on racial lines. If blacks
voted overwhelmingly for one candidate while whites voted overwhelmingly for
another candidate, then there would be evidence of racially polarized voting, and
the judge could order the drawing of new district lines, fundamentally altering
and essentially determining who would be elected.

Table 2: Precinct-Level Results from Information Theoretic Model. Louisiana’s 5th CD

Ouachita Parish, Precinct 1–5
R D I-1 I-2 A

white 0.7580 0.1250 0.0008 0.0000 0.1161 1158
black 0.3539 0.2505 0.0959 0.0526 0.2470 222
other 0.2220 0.2116 0.1850 0.1702 0.2112 31

963 207 28 17 196 1411

Rapides Parish, Precinct 38
R D I-1 I-2 A

white 0.4632 0.1241 0.0013 0.0000 0.4114 544
black 0.3133 0.2389 0.0929 0.0492 0.3057 112
other 0.2259 0.2142 0.1779 0.1571 0.2249 22

292 99 15 9 263 678

R=Republican, D= Democrat, I-1= Independent 1, I-2= Independent 2,
A= Abstention.

4.1 Uniform reference weights

We begin our analysis using non-informative, uniform qijk reference distribu-
tion weights. To obtain a result for the entire district, one first computes the
conditional probabilities, p̂ijk for each precinct i individually, and then, given
the objective, one may combine these separate precinct estimates into an overall
estimate. Table 2 shows two representative precincts. Ouachita parish’s precinct
1–5 had 1,158 white voters, 222 black voters, and 31 voters who were neither
black nor white. Cooksey received 963 votes there, as against 207, 28, and 17 for
his Democratic rivals, and 196 ballots cast in that precinct featured no valid vote
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for the US House contest. All of the known information is thus displayed in the
margins in Table 2. The estimates from our model are displayed in the interior
cells of the table. The pijk estimates in Table 2 are not adjusted to respect the
constraint that the Nijk values must be integers. Except for small values of Ni··,
this oversight is inconsequential. Below, the same information is shown for a sec-
ond precinct in the data set. We can observe from the marginals that these two
particular precincts are similar in being largely white and heavily Republican, but
we can also note by comparing the conditional probabilities that the estimated
white voting rates differed quite substantially. In 2000, the Fifth Congressional
District spanned 752 precincts in 20 parishes, and across these precincts there
was quite a bit of variability in the number of voters in each racial group, the
vote breakdown for the various candidates, and, relatedly, the resulting estimates
from our model.

It is often necessary in VRA cases to be able to examine individual precincts
rather than being presented with a single summary estimate for the entire district.
Fortunately, our methods allow estimation of the pi for a single precinct based
only on the data from that precinct thus allowing us to pin down and distinguish
behavior among the various precincts.

4.2 Non-uniform reference weights

The results presented above were based on uniform reference weights, and
thus did not incorporate any out-of-sample information. However, one could also
choose reference weights that reflect additional information about the underlying
process. In the context of elections, three obvious sources of potentially useful
information are historical returns (particularly in those cases where electoral dis-
tricts have not been redrawn), contemporaneous results in other contests, and
exit polls. Historical returns have the feature that they are likely to be available
at the same level of aggregation (the precinct, say), and so they are incompletely
informative about the quantities of interest in precisely the same way as the
contemporary returns. Because American ballots nearly always feature multiple
contests, the available information for a given geographic unit such as a precinct
usually includes returns for a number of races determined simultaneously. Fi-
nally, contemporary opinion polls offer an alternative (or additional) source of
information, and, depending on the questions asked, may constitute estimates
of the actual quantities of interest (the conditional probabilities). On the other
hand, they are very unlikely to be available at the lowest level of aggregation.
Instead, an opinion poll taken across a whole congressional district or state might
be incorporated into a set of weights used as a basis for computing estimates in
every precinct.



Recovering Vote Choice 165

Table 3: Precinct-Level Cross-entropy. Louisiana’s 5th CD

Cross-Entropy Weights
R D-1 D-2 D-3 A

white 0.48 0.20 0.01 0.01 0.30
black 0.24 0.34 0.01 0.01 0.40
other 0.24 0.24 0.01 0.01 0.50

Cross-Entropy Estimates
Precinct 1

R D-1 D-2 D-3 A

white 0.7693 0.1082 0.0214 0.0122 0.0889
black 0.2907 0.3344 0.0128 0.0115 0.3506
other 0.2472 0.2401 0.0104 0.0102 0.4922

Precinct 2
R D-1 D-2 D-3 A

white 0.4768 0.1095 0.0246 0.0139 0.3752
black 0.2442 0.3060 0.0123 0.0109 0.4267
other 0.2401 0.2344 0.0104 0.0101 0.5049

R=Republican, D-1= Democrat 1, D-2= Democrat 2, D-3= Democrat 3,
A= Abstention.

To modify the reference weights to exploit additional information, one can
follow Gokhale and Kullback (1978) and invoke the cross entropy principle,∑

ijk pijkln(pijk/qijk), and the reference distribution information, qijk, as in (3.3).
For our data, we consider some historical information. In 1998, Cooksey won the
seat uncontested. In 1996, the first year those particular boundaries were in
place, the seat was open, and Cooksey and Democrat Francis Thompson ad-
vanced from the primary (held in September that year) to a November run-off,
which Cooksey won 58% to 42%. Precinct data from 1996 could thus be used to
estimate the probabilities of voting for each candidate, conditional on race. In
turn, one might use these 1996 estimates to generate reference weights for anal-
ysis of the 2000 returns. Louisiana and a few other southern states, because of
past Court rulings stemming from Voting Rights cases, are unique in reporting
not just racial composition of the electorate, but racial registration and turnout
data as well. Hence, in this instance, an additional piece of information available
for each precinct is the racial composition of the registered voter population. For
instance, the 1158 white voters in the Ouachita precinct shown in Table 5 were
about 50% registered Republicans and 33% registered Democrats; by contrast, in
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the Rapides precinct, white voters were about 35% Republican and 50% Demo-
crat. One might model voting rates in the U.S. House race (or any other race)
using these data on composition of the voter pool.

Suppose, then, that on the basis of supplemental information, one chose iden-
tical reference weights for these two precincts, shown in Table 2. The estimates
we obtain using the reference or cross-entropy weights shown in the top of Table
3 (rather than the uniform reference weights) are shown at the bottom of Ta-
ble 3. Despite the very different reference weights used to obtain the results in
Tables 2 and 3, the final estimates, themselves, are somewhat similar, but sport
some significant differences. Most notably for the black group, our new priors
on Democratic leanings shift the Republican-Democratic balance dramatically
from the results previously obtained with uniform priors. In general, one can ex-
plore how the estimated conditional probabilities respond to a range of reference
weights as a means of investigating the range of possible substantive conclusions
consistent with the data.

5. Discussion

We have presented an information theoretic approach as a framework for rea-
soning in voting rights cases where the data are in aggregate form and the basic
corresponding recovery problem is a pure ill-posed inverse problem. Using a max-
imum entropy estimation criterion and aggregate election data formulated in pure
inverse problem form, we have demonstrated the information theoretic method
using actual election returns. Throughout, our emphasis has been on formulating
an information recovery procedure predicated on using only the information avail-
able to the researcher and minimizing the use of creative assumptions to convert
an ill-posed problem into a well-posed one that can be solved by conventional
means.

All formulations seeking to process and recover information from observed
aggregate election data must include some assumptions. In this paper, we have
attempted to make use of Occam’s razor, the logical principle that a problem
or model should be stated and analyzed in its most basic and simplest terms
and minimize the use of unsupported assumptions. Our emphasis has been on
developing a tractable way to extract information from aggregate data when
data restrictions mean that it must be modelled as an ill-posed inverse problem.
In Section 4.2, we demonstrated how prior beliefs incorporated into a reference
distribution may be used to augment the sample information. In this framework,
one can incorporate behavioral models and employ recovery procedures consistent
with the underlying outcome data. This conceptual basis can be extended to allow
the investigator to employ covariates that may be used to condition the unknown
probabilities (Judge, Miller and Cho, 2004). In the information recovery method
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used in this study, the assumptions are minimal and clear, and the solution
satisfies the simple and attractive multiplicity principle.
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Appendix A. Computational aspects: obtaining a solution

A.1 Computational aspects

There are two basic methods of approaching the computational aspect of this
problem. One is to write a program to solve a constrained minimization problem.
The other is to write a program to solve an unconstrained minimization prob-
lem. For our particular problem, the constraints for our constrained optimization
problem are shown in (3.4) and (3.5). Given this constrained optimization setup,
one could use a software package such as GAUSS or GAMS that can perform
constrained optimization to obtain results. Alternatively, one could use the con-
centrated objective function

F (λ) =
c∑

k=1

n·kλk +
g∑

j=1

ln

[
c∑

k=1

exp(−λknj·)

]
(A.1)

in any program that contains an optimization routine (constrained or uncon-
strained). Splus and R, for instance, have general optimization routines for un-
constrained optimization. To obtain results for an entire district, one needs to
perform this optimization for every observation (e.g. precinct) in the data set. So
the results need to be combined to obtain a single estimate for an entire district.
Sample code is available from the authors upon request.

A notable computational advantage of the approach to this problem based on
the Kullback-Leibler cross-entropy (3.6) or the Shannon entropy functional (3.8)
is that two of the main restrictions on the weights can be seamlessly and easily
built into the computational process. First of all, the inequality constraint that
requires nonnegativity (pi ≥ 0), is clearly satisfied since p(λ) is representable as
an exponential function of the parameters and data. This function is inherently
nonnegative. Second, given that nonnegativity is automatically imposed, the ad-
ditivity restriction can be enforced by the functional form, where the exponential
function is divided by a normalizing sum of the exponentials. Accordingly, ex-
cept for the moment/estimating equation itself, which still needs to be enforced
as a constraint, all of the other constraints are seamlessly integrated without any
additional requirements of the optimizing algorithm.
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Appendix B. An illustration of the solution process

Consider an election with 3 candidates, identified as “1”, “2”, and “3”. Sup-
pose that N votes are cast and that the individual votes are recorded as vi = k,
where i = 1, . . . , N indicates the voter and k = 1, 2, 3 indicates voter i’s vote
choice. To keep the example simple, suppose that the results from the election
are tabulated as the total sum of the votes (

∑
i vi), and only an average over all

of the votes (v =
∑

i vi/N) is reported. Given this information, how would one
estimate what proportions of the vote, pk, each candidate received?

With sufficiently large N , the number of distributions supported on set S =
{1, 2, 3} for each possible mean, v, is large enough that it does no harm to ignore
the discrete nature of the problem and treat it as infinite. Then, this inverse
problem is clearly ill-posed: we have three unknown probabilities, p1, p2, p3, but
only two pieces of information. The probabilities sum to 1,

3∑
k=1

pk = p1 + p2 + p3 = 1 ,

and the average vote score is

3∑
k=1

pk xk = v .

where xk = k for k = 1, 2, 3.
In order to solve this problem by using all the information we have while also

minimizing reliance on information we do not have, we select the probabilities
that maximize the Shannon entropy function,

H(p) = −
3∑

k=1

pk ln(pk) ,

subject to two constraints,
3∑

k=1

pk xk = v , (B.1)

and
3∑

k=1

pk = 1 . (B.2)

with pk ≥ 0.
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Since this is a basic maximization problem subject to two constraints, we use
the method of Lagrange multipliers to arrive at a solution. The Lagrangian for
this problem is

L(p, α, γ) = −
3∑

k=1

pk ln(pk) + α

(
v −

3∑
k=1

pk xk

)
+ γ

(
1 −

3∑
k=1

pk

)
, (B.3)

where α and γ are the Lagrange multipliers for constraints (B.1) and (B.2) re-
spectively. The first-order condition is

∂L

∂pk
= −ln(pk) − 1 − α xk − γ = 0.

Solving this yields

ln(pk) = −αxk − 1 − γ

pk = exp{−α xk − 1 − γ}.
We can express the intermediate solution as a function of the Lagrange multipli-
ers,

p̂k =
exp (−α̂ xk)∑3

k=1 exp (−α̂ xk)
, (B.4)

where α̂ is the optimal Lagrange multiplier for constraint (B.1).
We can substitute (B.4) back into the Lagrange equation (B.3) to obtain a

concentrated objective function

F (α) = αv + ln

[
3∑

k=1

exp (−αxk)

]
. (B.5)

Equation (B.5) is strictly convex in α. We can find the optimal value of the
Lagrange multiplier, α, by minimizing F (α). We can then use this value of the
Lagrange multiplier, α̂, in Equation (B.4) to obtain an estimate of the vote share.
This simple problem is a variant of Jaynes’s famous dice problem in which one
must assign probabilities to the six faces of a die based on the observed average
outcome of N rolls. In our case, we have three unknown probabilities and only
two pieces of available information.

Table 4: Estimated Conditional Probabilities

v p̂1 p̂2 p̂3 H(p̂)
1.5 0.6162 0.2676 0.1162 0.9012
2.0 0.3333 0.3333 0.3333 1.0986
2.5 0.1162 0.2676 0.6162 0.9012
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Although this is a simple, unrealistic example, it is nonetheless representative
of a large class of problems in voting-behavior, where information is limited to
aggregate returns. It exemplifies the constraint-based problems developed in
Sections 2 and 3 since there are three unknowns (any two of which completely
determine the third), but there is only one data point, making the problem ill-
posed. The constraint involving v is the only aggregate information available.
Given v and the structure of the problem, for a large N , the number of ways
that the constraints (B.1) and (B.2) can be satisfied is practically infinite. Using
conventional rules of logic, there is no way to solve this problem uniquely. By
utilizing the information theoretic criteria, however, we are led to an optimal
constraint-based formulation that yields a solution that is consistent with what
we know (i.e. the data). This solution has some attractive characteristics, not
least of which is that it makes minimal use of assumptions or information to solve
the estimation problem at hand.
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