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Abstract: Complexities involved with identifying the projection for a spe-
cific set of k factors (k = 2, . . . , 11) from an n-run (n = 12, 20 or 24) Plackett
Burman design are described. Once the correct projection is determined, dif-
ficulties with selecting the necessary additional runs to complete either the
full or half fraction factorial for the respective projection are noted, espe-
cially for n = 12, 20 or 24 and k = 4 or 5. Because of these difficulties,
a user-friendly computational approach that identifies the projection and
corresponding necessary follow-up runs to complete the full or half fraction
factorial is given. The method is illustrated with a real data example.
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1. Introduction

Plackett and Burman (1946) presented a set of two-level fractional factorial
designs (PB designs) for estimating (n− 1) factors in n runs. If all 2-factor (and
above) interactions are “0”, each of the estimated (n−1) main effects are unbiased.
The plans set forth by Plackett and Burman cover the situations where n is a
multiple of four and n ≤ 100. Baumert, Golomb, and Hall (1962) provided the
plans when n = 92. PB designs are especially attractive in screening situations,
i.e., when many factors (n− 1) may affect an outcome of interest but insufficient
time, effort and money are available to perform a “full” 2n−1 factorial needed to
determine the few (k) important factors that significantly influence the outcome.

If 2-factor interactions exist when using a PB design, biased estimation of the
(n − 1) main effects occurs, i.e., the estimated main effects actually contain a
contribution from existing 2-factor interactions. Lin and Draper (1993) showed
how each estimated main effect contains a contribution from a long list of 2-
factor interactions. Box, Hunter, and Hunter (1978) suggested one approach to
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eliminate this “blurring”. Their plan is typically referred to as a “fold over”. For
each of the original n treatment combinations, the “lo” level of a given factor
is changed to the “hi” level and the “hi” level of a factor is changed to a “lo”
level, i.e., if a “−” represents a “lo” level and a “+” represents a “hi” level, the
“+s” are changed to “−s” and vice-versa. Running the resulting new set of n
treatment combinations constitutes a follow-up of size n. Hence, the set of 2n
runs guarantee that each of the estimated (n − 1) main effects are free of any 2-
factor interactions (higher order interactions may be included in these estimates
but they are usually assumed to be minimal and are ignored). Box, Hunter and
Hunter (1978) showed that following up a PB design of size n with this foldover
approach always converts a resolution III design into a resolution IV design but
the total run size = 2n is doubled. (A PB design of resolution III is such that
all estimated main effects estimate both main effects and a long list of 2-factor
interactions. All estimated main effects from a resolution IV design are free of any
2-factor interactions but may be distorted by contributions from some 3-factor
(and higher) interactions.)

A downside to the foldover approach is the required cost, time and effort.
For the projection of k = 2 or 3 important factors from n ≤ 84 PB designs,
Box and Tyssedal (1996) listed full factorial properties, i.e., when no follow up
runs are needed to complete a full 2k factorial. Lin and Draper (1995) discussed
alternatives to a fold over. Their work showed that after the initial analysis of a
PB design, projection of the whole design into a lower dimensional space corre-
sponding to the k important factors leads to identification of helpful additional
runs (for some values of k). Specifically, projection properties of the two-level
designs for the k factors give insight as to which additional runs should be per-
formed that either complete the full 2k factorial or complete a 2k−1 fractional
factorial. The number of these additional runs being significantly less (for k = 4
or 5) than a foldover would require. Further, Draper and Linn (1995) provided a
characterization of the different possible projections of an n-run PB design into k
factors. Characterizations were made for n = 12, 20 and 24 where k = 2, 3, 4 and
5 respectively. When n = 12 and k = 2, 3, 4, only one “type” of projection exists
for each k. For n = 12 and k = 5, two “types” of projections were identified.
When n = 20 and 24, two “types” of projections exist for k = 3. When n = 20
and k = 4, three “types” of projections occur. When n = 24 and k = 4, four
“types” of projections occur. When n = 20 or 24 and k = 5, nine “types” of
projections were identified. When n = 20 or 24 and k > 5, there are a multitude
of projection types for each combination of n and k. Hence, after analyzing the
initial PB design and identifying the potentially important k factors, determining
the correct projection type and necessary additional runs to complete the full or
half fraction factorial can be quite tedious and difficult for the user.
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The major contributions of this paper are user-friendly computational meth-
ods for various (n, k) combinations from a user-defined n-run PB design that
determine: 1. the corresponding projection type and 2. additional runs, in
terms of the user’s k important factors (columns), necessary to complete a 2k

and 2k−1 factorial design for k = 4 and 5 and n = 12, 20 or 24. Section 2 high-
lights the excellent work by Lin and Draper (1995), Draper and Lin (1995) and
Lin and Draper (1992) pertaining to projection types and follow-up runs to a
PB designed experiment. Practical difficulties associated with implementation of
their important work are noted, providing motivation for the above-mentioned
computational approach. Section 3 presents an application of our two computer
programs in the context of a real-life data example. The Appendix includes “lay-
outs” of the PB designs used by JMP (2000), tables of corresponding projection
types (determined by our computer program), and “values” of the criteria used
to identify corresponding projection types based on the JMP (2000) PB design
layouts.

2. Plackett Burman Designs

In the Appendix, Tables 1, 2 and 3 show the 12-run, 20-run and 24-run
Plackett Burman designs used by the statistical software JMP (2000), respec-
tively. Consider the 12-run design. The first row (run) is all plus signs. The
second row (run) is

− + − + + + −−− + −.

Permute the last sign on the right to become the first sign on the left gives the
third row (run)

−− + − + + + −−− +.

Continuing with this permutation approach produces the remaining 9 runs of the
12-run Plackett Burman design in Table 1. Consider the 20-run PB design. The
first run is all plus signs. The second run is - + - - + + + + - + - + - - - - +
+ -. Permuting as described above produces the remaining 18 runs of the 20-run
PB design in Table 2. Consider the 24-run PB design. The first run is all plus
signs. The second run is

− + + + + − + − + + −− + + −− + − + −−−−.

Permuting as described above produces the remaining 22 runs of the 24-run PB
design in Table 3.

Draper and Lin (1995) and Lin and Draper (1995) presented two other schemes
for generating PB designs. Both of their approaches outlined the following “first
run” for n = 12, 20 and 24:
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n = 12 : + + − + + + −−− + −
n = 20 : + + −− + + + + − + − + −−−− + + −
n = 24 : + + + + + − + − + + −− + + −− + − + −−−−.

However, generation of the remaining (n − 1) columns differed. Draper and
Lin (1995) recommended removing the leftmost sign, place it on the extreme
right and move all signs one place back to the left — the nth row being all
−’s. In their other article, Lin and Draper (1995) recommended removing the
rightmost sign, placing it on the extreme left and moving all signs one place to
the right — the nth row again being all −’s. The result is that the “generating”
columns identified by Draper and Lin (1995) for the different projections are only
appropriate for the particular PB design espoused in their article. Further, the
follow-up runs Lin and Draper (1995) identified as those needed to complete the
full or fractional factorials are only appropriate for their PB design (based on
their column labels). A significant improvement for the user would be a method
that could easily identify the actual runs (in terms of the user’s column labels)
necessary to complete the full and half fraction factorial as well as the projection
type for the user’s particular PB design.

Consider the n = 12 run PB design in Table 1. The first run in Table 1 is the
negative of the last run of the 12-run PB design presented in the articles Draper
and Lin (1995) and Lin and Draper (1995). Multiplying every entry in the JMP
version by −1 and re-labeling columns 11 as 1, 10 as 2, . . . and 1 as 11, row 1
becomes row 12 in both versions outlined by Draper and Lin. Rows 2 - 11 are
now rows 2 - 11 in the “remove the leftmost sign approach”. Rows 2 - 11 are now
rows 11- 2 in the “remove the rightmost sign approach”. Similar column/row
relationships occur amongst the 3 methods for generating a PB design for the
n = 20 and 24 scenarios.

The relationships are described above because as mentioned, identifying a
projection type and which runs are needed to complete a full or half-fraction
factorial are dependent on column labels and the original version of the selected
n-run PB design. When discussing the k = 4 and n = 20 PB design, Lin and
Draper (1992) noted this problem stating “ . . . For n = 20, only three types of
projections exist (apart from sign changes in the columns, permutations of the
columns and rearrangement of the rows)” (our italics added).

Draper and Lin (1995) and Lin and Draper (1995) established a characteriza-
tion scheme for PB designs. For a particular set of k columns from an n-run PB
design, their scheme involved identifying triples and pairs of repeat runs, mirror
image runs and single runs to distinguish unique projections. This criteria is in-
dependent of the different PB design layouts described above. Manually counting
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the number of “repeat pairs” and “mirror image pairs” (and in some cases the
number of triples or number of unique runs) can be tedious, time consuming,
confusing and prone to error, especially when n = 20 or 24 and k > 3. Lin and
Draper (1995) established the columns needed to generate the different projection
types for k = 4 and 5 when n = 12,20 and 24 using their PB design layout de-
scribed above. Further, the number of different ways that a particular projection
may be determined was also given by Draper and Lin (1995). In two technical
reports, Lin and Draper (1991) and Draper and Lin (1988) give a more complete
list of the number of ways a projection can be determined. Since there are liter-
ally 100s of configurations that produce the same projection and each particular
n-run PB design can be constructed differently (with correspondingly different
column labels), manually identifying the projection type and necessary follow-up
runs to complete a full factorial or half-fraction factorial for a selected example
can be prohibitive, even if one uses the exact PB design given by Lin and Draper
(1995) and k = 4 or k = 5. As mentioned earlier, one of the major contributions
of this paper is a user-friendly computer program that quickly identifies the pro-
jection type for a n = 12, 20 or 24 PB design and a selected k (1 < k < n). The
program works for the user’s version of the n-run PB design and the k important
factors (in terms of the user’s columns). (Recall the 3 different approaches to
setting up a PB design outlined in Section 2). Criteria established by Draper and
Lin (1995) and Lin and Draper (1995) are implemented by our program. The
other major contribution of this paper is a user-friendly computer program that
identifies the follow-up runs (in terms of the user’s identified k important column
#s) needed to complete the positive or negative half fraction for any n = 12, 20
or 24 run PB design and any selected k = 4 or 5 columns. (Thus, the runs needed
for completion of the full factorial are known). (If a user has, say, 12 runs but only
9 factors, he may select a 12-run PB design and enter two columns of 0’s. Both
programs will work with this type of scenario.) The other major contribution or
our paper are Tables 4, 5 and 6 in the Appendix which summarize the projections
corresponding to the PB design layout used by JMP(2000). The following section
presents an example. How the programs assist the analysis by identifying both
the projection type and necessary follow-up runs (those that either complete the
full factorial or the positive/negative half fraction) is illustrated.

3. Example

Srinivas, Chand and Lonsane (1994) used a 20-run PB design to screen im-
portant factors that affect production of alpha-galactosidase by Asperigillus niger
MRSS 234 in solid state fermentation system. Their 20-run PB design had the
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same first run as Plackett and Burman (1946). It is given below

+ + −− + + + + − + − + −−−− + + −.

However, they cycled to the left; that is, the leftmost sign (+) was moved to the
far right and the whole row was shifted left. Thus, the second row (run) became

+ −− + + + + − + − + −−−− + + − +.

And the third row (run) became

−− + + + + − + − + −−−− + + − + +.

The last row being all −’s.
Srinivas, Chand and Lonsane (1994) identified factors (columns) 4, 6, 7, 8 and

13 as deserving further attention, i.e., k = 5. Using the form of their 20× 19 PB
design, a value k = 5 and the identified important factors (columns 4, 6, 7, 8 and
13), our first program determined the projection to be 5.1 as well as the number
of “mirror image pairs”(5) and the number of “repeat pairs” (0). Further, the
runs that make up the mirror image pairs and repeats were produced. Based on
the output from the program and the work by Lin and Draper (1995), 6 follow-up
runs were needed to complete the positive half fraction and another 6 follow-up
runs were needed to complete the negative half fraction (thus 12 total runs needed
to complete the full factorial). Their article, however, does not tell the user which
runs were needed in terms of the user’s columns (factors) 4, 6, 7, 8 and 13. Our
second program provided that answer.

Based on the same input information as the first program, our second program
specified which treatment combinations (from the 2k possible combinations) were
needed to complete the respective positive and negative half fractions, i.e., the
necessary follow-up runs (in terms the user understands, i.e., the user’s column
#s). Thus, to complete a positive 25−1 fractional factorial, where all estimated
main effects are free of any 2-factor interactions and all estimated 2-factor in-
teractions are free of all main effects and all other 2-factor interactions, the 6
follow-up runs needed in addition to the original 20 runs for the user’s columns
4, 6, 7, 8 and 13 were:

Columns

4 6 7 8 13

1 -1 -1 -1 -1
-1 -1 1 -1 -1
1 1 -1 -1 1
1 -1 1 -1 1
-1 -1 1 1 1
1 1 1 1 1
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Similarly, the 6 follow-up runs needed to complete the negative half fraction
(in addition to the original 20 runs for the user’s columns 4, 6, 7, 8 and 13) were
identified as:

Columns

4 6 7 8 13

-1 1 1 -1 -1
1 -1 -1 1 -1
-1 1 -1 1 -1
1 1 1 1 -1
-1 1 -1 -1 1
-1 -1 -1 1 1

To complete the full 25, the combined set of follow-up runs (positive half and
negative half) would be needed in addition to the original 20 runs for the user’s
columns 4, 6, 7, 8 and 13.

When k > 5 and n = 12, 20 or 24, sometimes it is advantageous to do a fold
over and sometimes it is advantageous (less runs with same “accuracy”, i.e., both
follow-up procedures result in estimated main effects being free from 2-factor
interactions but one follow-up procedure may have less runs) to do a follow-up
with the runs that complete the positive or negative half fraction. This problem
is currently being investigated.
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Appendix

Table 1: JMP 12-run Plackett Burman design

Columns

Run 1 2 3 4 5 6 7 8 9 10 11

1 1 1 1 1 1 1 1 1 1 1 1
2 -1 1 -1 1 1 1 -1 -1 -1 1 -1
3 -1 -1 1 -1 1 1 1 -1 -1 -1 1
4 1 -1 -1 1 -1 1 1 1 -1 -1 -1
5 -1 1 -1 -1 1 -1 1 1 1 -1 -1
6 -1 -1 1 -1 -1 1 -1 1 1 1 -1
7 -1 -1 -1 1 -1 -1 1 -1 1 1 1
8 1 -1 -1 -1 1 -1 -1 1 -1 1 1
9 1 1 -1 -1 -1 1 -1 -1 1 -1 1
10 1 1 1 -1 -1 -1 1 -1 -1 1 -1
11 -1 1 1 1 -1 -1 -1 1 -1 -1 1
12 1 -1 1 1 1 -1 -1 -1 1 -1 -1

Table 2: JMP 20-run Plackett Burman design

Columns

Run 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 -1 1 -1 -1 1 1 1 1 -1 1 -1 1 -1 -1 -1 -1 1 1 -1
3 -1 -1 1 -1 -1 1 1 1 1 -1 1 -1 1 -1 -1 -1 -1 1 1
4 1 -1 -1 1 -1 -1 1 1 1 1 -1 1 -1 1 -1 -1 -1 -1 1
5 1 1 -1 -1 1 -1 -1 1 1 1 1 -1 1 -1 1 -1 -1 -1 -1
6 -1 1 1 -1 -1 1 -1 -1 1 1 1 1 -1 1 -1 1 -1 -1 -1
7 -1 -1 1 1 -1 -1 1 -1 -1 1 1 1 1 -1 1 -1 1 -1 -1
8 -1 -1 -1 1 1 -1 -1 1 -1 -1 1 1 1 1 -1 1 -1 1 -1
9 -1 -1 -1 -1 1 1 -1 -1 1 -1 -1 1 1 1 1 -1 1 -1 1
10 1 -1 -1 -1 -1 1 1 -1 -1 1 -1 -1 1 1 1 1 -1 1 -1
11 -1 1 -1 -1 -1 -1 1 1 -1 -1 1 -1 -1 1 1 1 1 -1 1
12 1 -1 1 -1 -1 -1 -1 1 1 -1 -1 1 -1 -1 1 1 1 1 -1
13 -1 1 -1 1 -1 -1 -1 -1 1 1 -1 -1 1 -1 -1 1 1 1 1
14 1 -1 1 -1 1 -1 -1 -1 -1 1 1 -1 -1 1 -1 -1 1 1 1
15 1 1 -1 1 -1 1 -1 -1 -1 -1 1 1 -1 -1 1 -1 -1 1 1
16 1 1 1 -1 1 -1 1 -1 -1 -1 -1 1 1 -1 -1 1 -1 -1 1
17 1 1 1 1 -1 1 -1 1 -1 -1 -1 -1 1 1 -1 -1 1 -1 -1
18 -1 1 1 1 1 -1 1 -1 1 -1 -1 -1 -1 1 1 -1 -1 1 -1
19 -1 -1 1 1 1 1 -1 1 -1 1 -1 -1 -1 -1 1 1 -1 -1 1
20 1 -1 -1 1 1 1 1 -1 1 -1 1 -1 -1 -1 -1 1 1 -1 -1
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Table 3: JMP 24-run Plackett Burman design

Columns

Run 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 -1 1 1 1 1 -1 1 -1 1 1 -1 -1 1 1 -1 -1 1 -1 1 -1 -1 -1 -1
3 -1 -1 1 1 1 1 -1 1 -1 1 1 -1 -1 1 1 -1 -1 1 -1 1 -1 -1 -1
4 -1 -1 -1 1 1 1 1 -1 1 -1 1 1 -1 -1 1 1 -1 -1 1 -1 1 -1 -1
5 -1 -1 -1 -1 1 1 1 1 -1 1 -1 1 1 -1 -1 1 1 -1 -1 1 -1 1 -1
6 -1 -1 -1 -1 -1 1 1 1 1 -1 1 -1 1 1 -1 -1 1 1 -1 -1 1 -1 1
7 1 -1 -1 -1 -1 -1 1 1 1 1 -1 1 -1 1 1 -1 -1 1 1 -1 -1 1 -1
8 -1 1 -1 -1 -1 -1 -1 1 1 1 1 -1 1 -1 1 1 -1 -1 1 1 -1 -1 1
9 1 -1 1 -1 -1 -1 -1 -1 1 1 1 1 -1 1 -1 1 1 -1 -1 1 1 -1 -1
10 -1 1 -1 1 -1 -1 -1 -1 -1 1 1 1 1 -1 1 -1 1 1 -1 -1 1 1 -1
11 -1 -1 1 -1 1 -1 -1 -1 -1 -1 1 1 1 1 -1 1 -1 1 1 -1 -1 1 1
12 1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 1 1 1 1 -1 1 -1 1 1 -1 -1 1
13 1 1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 1 1 1 1 -1 1 -1 1 1 -1 -1
14 -1 1 1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 1 1 1 1 -1 1 -1 1 1 -1
15 -1 -1 1 1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 1 1 1 1 -1 1 -1 1 1
16 1 -1 -1 1 1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 1 1 1 1 -1 1 -1 1
17 1 1 -1 -1 1 1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 1 1 1 1 -1 1 -1
18 -1 1 1 -1 -1 1 1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 1 1 1 1 -1 1
19 1 -1 1 1 -1 -1 1 1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 1 1 1 1 -1
20 -1 1 -1 1 1 -1 -1 1 1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 1 1 1 1
21 1 -1 1 -1 1 1 -1 -1 1 1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 1 1 1
22 1 1 -1 1 -1 1 1 -1 -1 1 1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 1 1
23 1 1 1 -1 1 -1 1 1 -1 -1 1 1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 1
24 1 1 1 1 -1 1 -1 1 1 -1 -1 1 1 -1 -1 1 -1 1 -1 -1 -1 -1 -1

Table 4: 12-run Plackett Burman projection characterization

JMP Columns k Projection Type # repeat pairs # mirror image pairs

(10, 11) 2 2.1 12 12
(9, 10, 11) 3 3.1 4 8
(8, 9, 10, 11) 4 4.1 1 3
(7, 8, 9, 10, 11) 5 5.1 0 1
(4, 7, 9, 10, 11) 5 5.2 1 0
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Table 5: 20-run Plackett Burman projection characterization

JMP Columns k Projection # repeat # mirror
Type pairs image pairs

(18, 19) 2 2.1 40 50
(17, 18, 19) 3 3.1 16 24
(14, 17, 19) 3 3.2 24 16
(16, 17, 18, 19) 4 4.1 5 11
(14, 17, 18, 19) 4 4.2 9 7
(4, 17, 18, 19) 4 4.3 9 15
(15, 16, 17, 18, 19) 5 5.1 0 5
(14, 16, 17, 18, 19) 5 5.2 3 2
(11, 16, 17, 18, 19) 5 5.3 2 3
(4, 14, 17, 18, 19) 5 5.4 4 5
(6, 16, 17, 18, 19) 5 5.5 1 4
(5, 16, 17, 18, 19) 5 5.6 3 6
(8, 15, 17, 18, 19) 5 5.7 2 7
(11, 14, 17, 18, 19) 5 5.8 6 3
(10, 14, 17, 18, 19) 5 5.9 4 1
(14, 15, 16, 17, 18, 19) 6 6.1 0 1
(13, 15, 16, 17, 18, 19) 6 6.2 0 0
(13, 14, 16, 17, 18, 19) 6 6.3 1 0
(13, 14, 15, 17, 18, 19) 6 6.4 0 2
(13, 14, 15, 16, 18, 19) 6 6.5 1 1
(12, 13, 15, 16, 18, 19) 6 6.6 1 2
(12, 13, 14, 15, 18, 19) 6 6.7 1 5
(11, 14, 16, 17, 18, 19) 6 6.8 2 0
(11, 13, 15, 16, 17, 19) 6 6.9 0 3
(11, 13, 14, 15, 16, 19) 6 6.10 2 2
(11, 12, 15, 17, 18, 19) 6 6.11 2 1
(11, 12, 15, 16, 18, 19) 6 6.12 1 3
(11, 12, 13, 14, 15, 19) 6 6.13 0 4
(10, 11, 12, 14, 16, 19) 6 6.14 2 4
(9, 13, 16, 17, 18, 19) 6 6.15 3 0
(8, 11, 14, 17, 18, 19) 6 6.16 3 1
(7, 12, 15, 17, 18, 19) 6 6.17 3 3
(13, 14, 15, 16, 17, 18, 19) 7 7.1 0 0
(12, 13, 14, 15, 17, 18, 19) 7 7.2 0 1
(11, 13, 14, 15, 16, 18, 19) 7 7.3 1 0
(11, 12, 14, 15, 17, 18, 19) 7 7.4 1 1
(11, 12, 13, 14, 17, 18, 19) 7 7.5 1 2
(11, 12, 13, 14, 15, 18, 19) 7 7.6 0 2
(9, 10, 11, 12, 15, 16, 19) 7 7.7 0 3
(8, 11, 12, 14, 17, 18, 19) 7 7.8 2 1



Plackett Burman Designs 257

Table 5 (continued): 20-run Plackett Burman projection characterization

JMP Columns k Projection # repeat # mirror
Type pairs image pairs

(8, 9, 11, 13, 16, 18, 19) 7 7.9 2 0
(12, 13, 14,15,16,17,18,19) 8 8.1 0 0
(11,12,13,14,15,17,18,19) 8 8.2 0 1
(10,11,13,14,15,16,18,19) 8 8.3 1 0
(8,11,12,14,15,17,18,19) 8 8.4 1 1
(8,9,10,11,14,15,16,19) 8 8.5 0 2
(11,12,13,14,15,16,17,18,19) 9 9.1 0 0
(8,11,12,13,14,15,17,18,19) 9 9.2 0 1
(7,8,11,12,14,15,17,18,19) 9 9.3 1 0

Table 6: 24-run Plackett Burman projection characterization

JMP Columns k Projection # repeat # mirror
Type pairs image pairs

(22, 23) 2 2.1 60 72
(21, 22, 23) 3 3.1 24 36
(18, 21, 23) 3 3.2 28 32
(20, 21, 22, 23) 4 4.1 8 20
(19, 21, 22, 23) 4 4.2 8 16
(18, 21, 22, 23) 4 4.3 12 16
(16, 21, 22, 23) 4 4.4 12 12
(13, 20, 21, 22, 23) 5 5.1 2 10
(17, 20, 21, 22, 23) 5 5.2 4 8
(16, 20, 21, 22, 23) 5 5.3 2 6
(15, 20, 21, 22, 23) 5 5.4 6 6 * no 3’s
(10, 20, 21, 22, 23) 5 5.5 0 8
(9, 19, 21, 22, 23) 5 5.6 4 4
(15, 18, 21, 22, 23) 5 5.7 6 6 * two 3’s
(14, 19, 20, 22, 23) 5 5.8 6 6 * one 3
(15, 17, 18, 22, 23) 5 5.9 6 2
(18, 19, 20, 21, 22, 23) 6 6.1 1 5 *15 clean
(17, 19, 20, 21, 22, 23) 6 6.2 0 6
(17, 18, 20, 21, 22, 23) 6 6.3 1 3
(17, 18, 19, 21, 22, 23) 6 6.4 2 4 * 12 clean
(17, 18, 19, 20 21, 23) 6 6.5 0 4
(16, 19, 20, 21, 22, 23) 6 6.6 1 1
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Table 6 (continued): 24-run Plackett Burman projection characterization

JMP Columns k Projection # repeat # mirror
Type pairs image pairs

(16, 18, 19, 21, 22, 23) 6 6.7 2 2
(16, 18, 19, 20 22, 23) 6 6.8 0 2
(15, 18, 19, 21, 22, 23) 6 6.9 2 0
(15, 17, 20, 21, 22, 23) 6 6.10 4 2
(15, 17, 18, 20, 22, 23) 6 6.11 3 1
(15, 16, 19, 21, 22, 23) 6 6.12 0 0
(15, 16, 18, 20, 22, 23) 6 6.13 2 4 *15 clean
(14, 15, 19, 20, 22, 23) 6 6.14 3 3 *12 clean
(14, 15, 17, 19, 21, 23) 6 6.15 1 5 *12 clean
(14, 15, 17, 19, 20, 23) 6 6.16 2 4 *18 clean
(13, 18, 19, 21, 22, 23) 6 6.17 3 3 *15 clean
(12, 14, 15, 19, 20, 23) 6 6.18 4 0
(16, 18, 19, 20, 21, 22, 23) 7 7.1 0 1
(15, 18, 19, 20, 21, 22, 23) 7 7.2 1 0
(15, 17, 18, 19, 21, 22, 23) 7 7.3 0 0
(15, 16,17, 18, 20, 22, 23) 7 7.4 1 1
(14, 15, 17, 18, 19, 22, 23) 7 7.5 2 0
(17, 18, 19, 20, 21, 22, 23) 7 7.6 0 3
(16, 17, 18, 19, 21, 22, 23) 7 7.7 1 2
(15, 17, 19, 20, 21, 22, 23) 7 7.8 0 2
(14, 15, 17, 20, 21, 22, 23) 7 7.9 2 1
(13, 14, 16, 17, 18, 21, 23) 7 7.10 2 2
(12, 17, 19, 20, 21, 22, 23) 7 7.11 0 4
(12,13,14,16,17,18,23) 7 7.12 1 3
(16,17,18,19,20,21,22,23) 8 8.1 0 1
(15,17,18,19,20,21,22,23) 8 8.2 0 0
(14,15,17,18,19,20,22,23) 8 8.3 1 0
(13,14,15,16,17,18,21,23) 8 8.4 1 1
(12,17,18,19,20,21,22,23) 8 8.5 0 2
(15,16,17,18,19,20,21,22,23) 9 9.1 0 0
(13,14,15,16,18,19,20,22,23) 9 9.2 0 1
(12,14,15,17,18,19,20,22,23) 9 9.3 1 0
(14,15,16,17,18,19,20,21,22,23) 10 10.1 0 0
(11,12,13,14,16,17,18,20,21,23) 10 10.2 0 1
(10,11,13,14,15,18,19,21,22,23) 10 10.3 1 0
(13,14,15,16,17,18,19,20,21,22,23) 11 11.1 0 0
(9,10,11,13,14,15,18,19,21,22,23) 11 11.2 1 0
(9,10,11,12,14,16,18,20,21,22,23) 11 11.3 0 1
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