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Abstract: In longitudinal studies where the same individuals are followed
over time, bias caused by unobserved data raises a serious concern, partic-
ularly when the data are missing in a non-ignorable manner. One approach
to deal with non-ignorable missing data is a pattern mixture model. In this
paper, we combine the pattern mixture model with latent trajectory anal-
ysis using the SAS TRAJ procedure, which offers a practical solution to
many problems of the same nature. Our model assumes a stochastic pro-
cess that categorizes a relative large number of missing-data patterns into
several latent groups, each of which has unique outcome trajectory, which
allows patterns with missing values to share information with patterns with
more data points. We estimated the longitudinal trajectories of a memory
test over 12 years of follow-up, using data from the prospective epidemiolog-
ical study of dementia. Missing data patterns were created conditional on
survival, and final marginal response was obtained by excluding those who
had died at each time point. The approach presented here is appealing since
it can be easily implemented using common software.
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mechanism, pattern mixture model, SAS TRAJ, word list delayed recall.

1. Introduction

Longitudinal designs, requiring follow-up of the same individuals over time,
are increasingly common in epidemiological studies. However, missing data bias
is a major problem in longitudinal studies where attrition is inevitable over time,
particularly among older adults. Frail elderly subjects are likely to miss or delay
scheduled assessments for a variety of reasons, and a further problem is that the
study outcomes themselves are often associated with the frailty (e.g., disability,
disease severity).

Restricting analyses to only the observed data could bias the results depend-
ing on the types of missingness. Little and Rubin (1987) defined three types of
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missing-data mechanisms; 1. Missing Completely At Random (MCAR), which
literally means missingness is completely random and does not depend on partici-
pants’ characteristics, 2. Missing At Random (MAR), where missingness depends
on participant’s previously observed responses or observed characteristics, and 3.
Missing Not At Random (MNAR), where missingness depends on unobserved
outcome values (as well as possibly on observed values). Laird (1988), Little
and Rubin (1987) also defined two general classes of missing-data mechanisms
for likelihood-based approaches. A missing-data process is called ignorable if
a likelihood-based approach provides valid inferences to the model parameters
even when the missingness is ignored, while if not, called non-ignorable. Laird
(1988) showed that MAR is an ignorable missing-data mechanism. However, un-
der MNAR, likelihood-based analyses that ignore the missing-data mechanism
may be biased (non-ignorable missingness).

Two general classes of model based approaches were proposed to cope with
non-ignorable missing-data: selection models and pattern-mixture models (Lit-
tle, 1993). The two models differ in the way the joint distribution of (Y,R)
(Y :outcome, R: Missing indicator) is partitioned. Selection models partition the
joint distribution of Y and R to be the distribution of Y and the conditional
distribution of R given Y as shown below in (1.1), while pattern mixture models
partition the joint distribution to be the distribution of R and the conditional
distribution of Y given R as shown in (1.2).

P (y, r |X, θ) = P (y |X, β)P (r | y, X, λ) (1.1)
P (y, r |X, γ) = P (r |X, α)P (y | r,X, π), (1.2)

where θ = (β, λ) and γ = (α, π).
Since missing values, by definition, cannot be observed, the conditional dis-

tribution of R given Y (missing-data process) in selection models need to be
based on an assumption which could still hold bias if it is mis-specified. Pat-
tern mixture models do not require specification of missing-data process and the
marginal distribution of the response can be obtained by a weighted sum of the
distribution within each pattern. However, as with selection models, it is not free
from shortcomings; one major problem in pattern mixture modeling approach
is non-identifiability, or non-estimable parameters. For example, for a particular
subgroup of the sample, if we observe only baseline data and there is no follow-up
data at all, we cannot estimate the slope of the trajectory for that group. Two
major strategies to deal with the non-identifiability of pattern-mixture models
are identifying restrictions (Little, 1993; Thijs et al., 2002; Kennward, Molen-
berghs and Thijs, 2003) and model simplification (Thijs et al., 2002). The first
strategy assumes that the missing variable distribution (Little, 1993) is equal
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to a function of corresponding identifiable distribution of some other patterns.
The second strategy allows different patterns to share certain parameters so that
the incomplete patterns can borrow information from patterns with more data
points.

In this paper, we offer a practical solution to the non-identifiability problem
by using latent trajectory analysis in the framework of pattern-mixture models.
Latent trajectory analysis (Nagin, 1999; Roeder, Lynch and Nagin, 1999; Jones,
Nagin and Roeder, 2001) identifies latent groups which hold different trajectory
patterns. By allowing the probability of being in each latent group to depend
on the missing-data patterns, the approach presented here can be viewed as the
model simplification described previously. We applied this approach to estimate
the longitudinal trajectories of a cognitive test, which taps memory function of
individuals, over 12 years of follow-up.

In addition to presenting a practical solution to the non-identifiability prob-
lem, we report two additional points of significance. One is the way we created the
missing data patterns distinguishing dropout due to death from simple dropout
(by living subjects). Another is our estimation of the mean conditional on sur-
vival, i.e., when we estimated the marginal mean of the response over time by
weighted sum of parameters from each missing data pattern, we included only
the survivors at each time point. Below we describe first the data, and second the
latent trajectory analysis. Then we describe the missing-data patterns, and the
approach used to produce the mean trajectory over time, followed by the results
and the implication of this approach.

2. Methods

2.1 Data

The Monongahela Valley Independent Elders Survey (MoVIES project) was a
prospective epidemiological study of dementia from 1987 to 2002, set in the mid-
Monongahela valley of southwestern Pennsylvania. The study background and
methods have been reported previously in greater detail (Ganguli et al., 1993;
Ganguli et al., 2000). Briefly, the sample was selected by means of a 1:13 age-
stratified (65-74, 75+), random sample of elderly individuals in 1987, identified
through the voter registration lists. Entry criteria included age 65 years or older,
being community-dwelling at the time of study entry, fluency in English, and at
least a sixth-grade education. The last two conditions were designed to enhance
interpretability of the neuropsychological tests. After giving informed consent,
participants were interviewed by trained research associates. Study procedures
were approved annually by the University of Pittsburgh Institutional Review
Board. 1422 subjects randomly selected from the voter registration list were as-
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sessed at study entry (Wave 1, 1987- 1989). At approximately two-year intervals
thereafter, subjects were re-evaluated in a series of data collection waves. The
assessment included cognitive testing with a battery designed to tap a range of
cognitive domains affected by dementia. Here we focus on a memory test, the
Word List Delayed Recall (WLDR)(10-item version developed for the Consor-
tium to Establish a Registry for Alzheimer’s Disease (Morris et al., 1989). We
estimated the mean trajectory on WLDR from Wave 1 (baseline) through Wave
6, over 12 years of follow-up, for the entire cohort, and also separately for age
groups 65-75 and 75+ years, adjusting for non-ignorable missing-data bias.

2.2 Latent class trajectory analysis

Trajectory analysis assumes heterogeneity in a sample where unobserved ho-
mogeneous sub-populations exist (Nagin, 1999). For example, we expect memory
functions overall to decline over time among elderly populations. However, within
such a population, there may be subgroups with different slopes, i.e., some in-
dividuals who decline more, others who decline less, and yet others who show
almost no decline over time. In this example, if we use a linear regression model,
the coefficient of a time indicator variable would indicate the amount of decline
in memory score as follow-up time increases by 1 unit. We could also add time2

, or time3 , etc. to the model to capture the slope more precisely. There could
be as many distinct coefficients, i.e., slopes, as there are subjects. We assume
there are clusters (latent groups) which most efficiently categorize these different
patterns in slopes (trajectories). In many past studies, the identification of la-
tent groups preceded the identification of risk factors or characteristics associated
with each cluster (e.g., in the previous example, higher educational attainment
might be associated with the group showing minimal memory decline). How-
ever, this approach, where classification of slopes and risk factor analyses are
conducted separately, does not account for the uncertainty involved in a classi-
fication of slopes, and could thus lead to bias (Clogg 1995; Roeder, Lynch and
Nagin, 1999). In the current study, we used the SAS TRAJ procedure (Jones,
Nagin and Roeder, 2001). Briefly, this procedure estimates two models simul-
taneously by using Maximum Likelihood Estimation approach; one estimating
the probability of being in each homogenous latent group, identification for each
subject based on the time-independent covariates (characteristics of the subject),
and the other estimating the trajectory (slope) of each homogeneous group over
time. The risk factors (covariates) affect the likelihood of a particular data tra-
jectory, but it is assumed that nothing more can be learned about the data (Y )
from risk factors (Z), given group identification (C). Given that there are K
latent trajectory groups, the conditional distribution of the observable outcome
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for subject i (yi), given risk factors zi, is written as follows:

f(yi | zi) =
K∑

k=1

Pr(Ci = k |Zi = zi)Pr(Yi = yi |Ci = k),

where Ci is latent group identification for subject i.
In this paper, we included missing-data patterns in covariates (Z) along with

other covariates potentially affecting longitudinal trajectory of cognitive test per-
formance over time. The effect of time-independent covariate on group member-
ship is modeled with a generalized logit function,

Pr(Ci = k |Zi = zi) =
exp(θk + γ′kzi)∑K
`=1 exp(θ` + γ′`zi)

.

PROC TRAJ also allows time-dependent covariates (Jones, Nagin and Roeder,
2001), which we do not discuss here. In this study, our response variable is
WLDR test scores over time. PROC TRAJ provides the option of modeling
three different distributions for Pr(Yi = yi|Ci = k): count, psychometric scale,
and dichotomous data. Since WLDR scores range from 0 to 10, we used a cen-
sored normal distribution. The Bayesian Information Criterion (BIC) (Schwarz,
1978) in the SAS TRAJ procedure identified the optimal number of trajectories,
along with the polynomial degree of each trajectory. The SAS TRAJ procedure
calculates the probability of each subject belonging to each latent group and as-
signs each subject to the latent group with the largest probability. Parameters
were estimated by a maximum likelihood approach using a general quasi-Newton
maximization procedure. Subjects with missing longitudinal data are included as
long as they have risk factor covariate data. In this study, all subjects have the
information on covariates, which are age at baseline, sex, education levels, and
missing-data patterns (described below).

2.3 Creation of missing data patterns

Our general observation and past research (Ganguli, Dodge and Mulsant,
2002; Ratcliff et al., 2003; Dodge et al., 2003; Whyte et al., 2004) suggest that
those with frail health or low cognition are more likely to miss scheduled as-
sessments. Also we expect that those with sharply declining cognitive status,
e.g., due to dementia, could miss all subsequent assessments, regardless of their
previously observed cognitive test scores, indicating non-ignorable missing-data.
Pattern mixture models can give unbiased estimates under the non-ignorable
missing process (Little, 1993) and are used in various applications (e.g., Hedeker
and Gibbons, 1997; Park and Lee, 1999). An example of creating missing data
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patterns is depicted in Table 1. For this illustration, we assume there are base-
line and two follow-up data points. A conventional way of creating the missing
data patterns is to distinguish the four patterns (completers, missing the last ob-
servation only, missing the last two observations, and intermittent missingness)
by using three dummy variables. However, it can be informative to distinguish
those who survive but drop out of the study from those who miss the interview
due to death. If we are interested in the marginal distribution of memory test
scores over time, it should be estimated conditional on survivorship of the study
participants.

Table 1: Conventional Way of Missing Data Classification: O=observed,
X=missing.

Missing Data Pattern Wave 1 Wave 2 Wave 3

1 Completers O O O
2 Miss the last observation. O O X
3 Miss the last 2 observations. O X X
4 Intermittent missingness O X O

We created missing patterns based on the data collection wave during which
the participants died and the wave at which the last observation was made. Table
2 shows these patterns. We have baseline and five time points of follow-up for
a total of 6 observations. The table is read as follows. The subject who died
between Wave 1 and Wave 2, with observed cognitive test score at Wave 1 (i.e.,
missing wave 2 data) is identified under missing data pattern 1. The subject who
died between wave 2 and wave 3, with the last observed cognitive test score at
wave 1, is identified as missing data pattern 2. The subject who died between
wave 2 and wave 3, with the last observed cognitive test at wave 2, is identified
as missing pattern 3. Likewise, pattern 9, for example, indicates those who died
between wave 4 and wave 5, with their last observed cognitive data at wave 3.
Score at wave 2 is not necessarily observed for pattern 9. Here we assume that
intermittent missingness occurs randomly due to subjects’ vacation, occasional
sickness, family gatherings, etc and do not further distinguish them. This way,
we have 21 patterns.

Preliminary analysis showed that the trajectory model with covariates distin-
guishing these 21 patterns was not stable. We, therefore, collapsed these patterns
into the three groups based on the observations and impressions by research staff
as follows. Those who participate without any missing data up until they die
have relatively good cognition, and death is often due to acute illness. However,
those who miss out on assessments continuously before they die have relatively
poor cognition possibly related to dementia or other chronic diseases affecting
cognition. The patterns with large bold font in Table 2 (patterns 11, 16, 17,
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henceforth called Pattern A) are those who only died after wave 5 or 6, yet had
missing memory scores even at early waves such as waves 1 and 2. We expect
that these subjects’ memory scores would have been relatively poor at baseline
and at follow-ups if we had been able to observe them. The patterns with regular
font (patterns 1, 3, 6, 10, 15, and 21, henceforth called Pattern C), on the other
hand, represent participants who had memory test scores up until they died. We
expect these subjects have relatively high cognition at baseline and follow-ups.
The pattern with regular sized-font falls in between the two groups (hence forth
called Pattern B). We created two dummy variables to identify the three groups
of missing data patterns (Patterns A, B, and C: Pattern A as a reference group)
and examined the association between these patterns and baseline memory test
scores. In addition, the two dummy variables for patterns A, B and C as well
as three basic demographic variables (age at Wave 1, sex, and education — high
school graduates or higher education vs. less than high school education) were in-
cluded in the SAS TRAJ procedure to identify the homogeneous latent trajectory
groups of memory test scores over time.

Table 2: Data missing pattern (Pn) conditional on death

The wave after
which partici- The last observed wave (number of subjects)
pants died

1 2 3 4 5 6

1 Pn 1
(77)

2 Pn 2 Pn 3
(30) (71)

3 Pn 4 Pn 5 Pn 6
(15) (34) (61)

4 Pn 7 Pn 8 Pn 9 Pn 10
(19) (6) (34) (67)

5 Pn 11 Pn 12 Pn 13 Pn 14 Pn 15
(14) (5) (13) (40) (65)

6 Pn 16 Pn 17 Pn 18 Pn 19 Pn 20 Pn 21
(81) (43) (30) (57) (84) (414)

Pn: Pattern for short, Pattern A is shown with large bold font, Pattern B is
shown with bold font, Pattern C is shown with regular font.
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2.4 Estimation of marginal trajectory over time

The trajectory analysis assigns to each individual the probability of falling into
each latent trajectory group. Each latent trajectory has its own intercept, linear
and quadratic parameters to indicate the trajectory of the memory test score as a
function of duration from baseline. By using each subject’s probability of falling
into each trajectory group and each trajectory group’s parameter estimates, we
calculated subject-specific intercept, linear and quadratic parameters (weighted
sum of parameter estimates for each trajectory group). Finally we estimated
mean memory test scores as a function of duration from baseline, by averaging
the test scores among surviving individuals at each time point (exclude those died
from the estimation) using the subject-specific parameter estimates. Confidence
intervals of this mean trajectory was computed by using bootstrap (Davison and
Hinkley, 1997).

Table 3: Demographic characteristics of the sample; overall and by missing data
patterns

N Mean age (SD) % of women (A) (B)

Overall Sample 1260 73.1 (5.72) 56.0 56.8 6.29 (1.99)
Missing pattern A 138 72.9 (5.30) 54.4 48.6 5.86 (2.13)
Missing pattern B 367 73.9 (5.79) 57.2 56.1 6.07 (2.04)
Missing pattern C 755 72.8 (5.74) 55.8 58.7 6.49 (1.92)

(A)= % of those with high school graduate and over, (B)= Mean (SD) baseline
memory score (Word List Delayed Recall).

3. Results

To see the trajectory of test score over time among those who were cognitively
healthy at baseline, we excluded 126 subjects who were already demented at
baseline and 36 subjects who did not complete the WLDR test at baseline. Table
2 shows that 414 subjects (33%, Pattern 21) completed all the 6 observations.
Patterns 1, 3, 6, 10, 15 and 21 are for those who completed the test and then
died during the same wave. The mean (SD) age, the proportion of women and
those with high school education and over, and cognitive test scores among all
remaining 1260 subjects at baseline and also among those with each missing data
pattern are presented in Table 3. As we expected, those with pattern C (those
with memory data right before they died) had highest baseline test scores and
showed narrower standard deviation, while those with pattern A (those with
missing memory data several waves before they actually died) had the lowest
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test scores and wider standard deviation, suggesting that this group is more
heterogeneous in baseline test scores.

Word List Delayed Recall Score Over Time
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Figure 1: Trajectories of word list delayed recall score for four latent groups

Based on the Baysian Information Criteria (BIC), we identified four latent
trajectories. Figure 1 shows these trajectories. Two trajectories are shown for
each latent group; a trajectory using subject-specific probabilities belonging to
each latent group (indicated as “Actual”) and a trajectory using an assigned
latent group for each subject, which is the latent group with the largest probabil-
ity (indicated as “Predicted”). Each trajectory showed relatively stable patterns
over time; we call these 4 groups as 1. poor memory, 2. mid-level memory, 3.
good memory, and 4. very good memory. To examine our hypothesis that those
who with missing memory test data many years before they died have relatively
poor memory test scores at baseline and follow-ups, we calculated the distribu-
tion of the latent group membership for each missing data pattern (patterns A,
B, and C) for four demographic groups (men and women with higher and lower
education). Table 4 shows the results. As we expected, subjects with missing
pattern A (those with missing memory data several waves before they actually
died; patterns with regular font in Table 2) showed higher probability of belong-
ing to the poor memory group compared with other missing data patterns, while
subjects with missing pattern C (those with memory data right before they died)
showed higher probability of belonging to the very good memory group. In all



240 H. H. Dodge, C. Shen and M. Ganguli

four demographic groups, this pattern was clearly seen from Table 4. For exam-
ple, among men with lower education, 20% of those with missing data pattern A
fell into the poor memory latent group, but only 8% of those with missing data
pattern C fell into this group. On the other hand, only 1% of those with missing
data pattern A fell into the very good memory latent group, but 4% of those with
missing data pattern C fell into this group.

Table 4: Probability of belonging to each latent group by missing data patterns

Latent 1 Latent 2 Latent 3 Latent 4

Poor memory Mid-level memory Good memory Very good memory

Men with lower education
Pattern A 0.20 0.36 0.43 0.01
Pattern B 0.16 0.43 0.38 0.02
Pattern C 0.08 0.42 0.45 0.04

Men with higher education
Pattern A 0.12 0.25 0.60 0.02
Pattern B 0.10 0.30 0.53 0.07
Pattern C 0.04 0.27 0.57 0.11

Women with lower education
Pattern A 0.10 0.29 0.57 0.03
Pattern B 0.08 0.33 0.48 0.11
Pattern C 0.03 0.29 0.50 0.18

Women with higher education
Pattern A 0.05 0.18 0.69 0.08
Pattern B 0.04 0.19 0.54 0.24
Pattern C 0.01 0.14 0.50 0.35

We also compared the results of PROC TRAJ with and without missing data
patterns as covariates; we calculated individual specific trajectory (i.e., intercept,
linear and quadratic terms) for subjects aged 75 years old with different com-
binations of sex, education and missing data patterns. The results are shown
in Table 5. Here we call PROC TRAJ with covariates of missing data patterns
Model 1 and PROC TRAJ without including missing data patterns (i.e., ignoring
missingness) Model 2. Model 2 had higher intercepts and higher positive linear
trends compared with Model 1 in all groups. One of the marked differences is
that in Model 1, men with lower education with missing data patterns A and B
had negative linear slopes, while in Model 2 (PROC TRAJ without missing data
patterns) the slope was positive. Ignoring missingness could cause bias in our
data.
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Table 5: Comparison of the individual specific trajectory based on PROC TRAJ with
missing data patterns (indicated as Model 1) and without missing data patterns

(indicated as Model 2) as covariates.

Sex Education MDP Intercept Linear Quadratic

Model 1 Model 2 Model 1 Model 2 Model 1 Model 2

Men Lower A 5.032 5.547 -0.021 0.009 -0.020 -0.018
B 5.166 -0.013 -0.019
C 5.527 0.017 -0.018

Higher A 5.364 5.996 0.011 0.038 -0.018 -0.017
B 5.494 0.016 -0.018
C 5.854 0.043 -0.017

Women Lower A 5.469 6.077 0.017 0.040 -0.018 -0.016
B 5.628 0.022 -0.018
C 5.979 0.046 -0.016

Higher A 5.828 6.650 0.048 0.068 -0.017 -0.015
B 6.103 0.052 -0.016
C 6.490 0.071 -0.014

MDP = Missing Data Pattern for short

Based on the individual specific parameter estimates derived from trajectory
model with missing data patterns as covariates, we then estimated cognitive
scores for each individual at continuous time points, excluding those died at
each time point, and plotted the trajectory for the whole cohort in Figure 2,
and the trajectories among those aged 65 to 75, and those aged 75 and older
in Figures 3 and 4, respectively. The confidence interval was calculated for the
latent trajectory model through bootstrap approach. Figures 2, 3, and 4 also
include the trajectory plots based on the mixture model without missing data
patters as covariates, using PROC MIXED (i.e., model under MAR assumption).
Since the trajectories based on PROC MIXED do not exclude those dropped
out due to death, and subjects who dropped out due to death tend to have
sharper declines, the trajectory based on PROC MIXED showed larger decline
than those estimated from latent trajectory models which used only survivors at
each time point. Since PROC MIXED ignores the non-ignorable missingness, it
usually tends to underestimate the decline, but the figures presented here indicate
that the inclusion of dead people has a large impact on the overall marginal
trajectories.



242 H. H. Dodge, C. Shen and M. Ganguli

Word List Delayed Recall Score Over Time
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Figure 2: Mean trajectory of word list delayed recall score: whole cohort
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Figure 3: Mean trajectory of word list delayed recall score: age group 65-75 at baseline



Pattern-mixture Latent Trajectory Modeling 243

Mean Trajectory of Word List Delayed Recall Score 
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Figure 4: Mean trajectory of word list delayed recall score: age group 75 and
older at baseline

4. Conclusion

In longitudinal data, we often encounter non-random missingness. The pat-
tern mixture model approach treats the whole population as a mixture of several
patterns of respondents and non-respondents and estimates overall population pa-
rameters by weighted-averaged across patterns. Although pattern mixture model
has the advantage of not requiring the assumption of missing-data process, one
problem is non-identifiability. Here we used the latent trajectory approach which
is incorporated in SAS PROC TRAJ. This approach avoids the problem of non-
estimable parameters pertained in pattern mixture model by allowing patterns
with missing values to share information with patterns with more data points
through the latent variable. Our approach can be viewed as a model simplifica-
tion, similar in a way to that of Roy (2003), who used latent class analysis to
reduce large numbers of missing data patterns. The approach presented in this
paper estimates two models simultaneously by using Maximum Likelihood Esti-
mation procedure; one for estimating the probability of being in each latent group
given covariates, and another estimating the trajectory of each latent group. The
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missing data patterns were included as covariates to take care of the bias under
the assumption of non-ignorable data missingness.

One added significance is the way we created missing data patterns; we dis-
tinguished those who dropped out due to death from those who dropped out for
other reasons while still alive, creating missing data patterns based on the num-
ber of waves missed before death. Final marginal response of outcome over time
was estimated by excluding those who died at each time point, making the results
representative among survivors. The trajectory based on PROC MIXED could
over-adjust the slope by extrapolating the estimates beyond subjects’ death. If
the goal of obtaining the trajectory is to show the mean scores among the subjects
who survived at each time point, then caution is needed to ensure the estimates
reflect those among survivors.

One limitation of the approach presented here is that we collapsed large num-
ber of missing-data patterns into feasible numbers of patterns based on our hy-
pothesis and assumptions. There could be heterogeneity within the collapsed
missing data patterns. Also as with other missing data models, we cannot test
that missing data are MAR within dropout patterns. One of the advantages of the
approach used here is that SAS TRAJ is easily run in SAS (the macros obtainable
from the website: http://www.andrew.cmu.edu/user/bjones), which makes it ap-
pealing for the applications in various fields. Characteristics of non-respondents
could differ depending on the nature of the study (e.g., Veenstra et al., 2006).
Creation of missing data patterns based on the careful examinations of factors
potentially associated with non-response or non-response patterns, together with
the latent trajectory analysis could give a flexible solution to non-ignorable miss-
ingness in a longitudinal study. Our approach should be useful to investigators
analyzing data from repeated measures over long periods of time, particularly in
population-based observational studies where attrition is inevitable.
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