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Abstract: Additive model is widely recognized as an effective tool for di-
mension reduction. Existing methods for estimation of additive regression
function, including backfitting, marginal integration, projection and spline
methods, do not provide any level of uniform confidence. In this paper a sim-
ple construction of confidence band is proposed for the additive regression
function based on polynomial spline estimation and wild bootstrap. Monte
Carlo results show three desirable properties of the proposed band: excellent
coverage of the true function, width rapidly shrinking to zero with increasing
sample size, and minimal computing time. These properties make he pro-
cedure is highly recommended for nonparametric regression with confidence
when additive modelling is appropriate.

Key words: Confidence interval, curse of dimensionality, inflation ratio, lin-
ear splines, wild bootstrap.

1. Introduction

Non- and semi- parametric smoothing estimation of unknown regression func-
tions has found many applications in modelling nonlinearity which exists widely
in various disciplines such as econometrics (Feng 2004, Racine and Li 2004), and
biological sciences (Liang 2004, Liang, Wang, Robins and Carroll 2004). One
common reservation about using nonparametric smoothing is the “curse of di-
mensionality”, which refers to the lack of accuracy in estimating functions of
general nonparametric multivariate form. Additive modelling is a very effective
technique to alleviate the curse of dimensionality without constraining the re-
gression function to simple linear form, see for example, Hastie and Tibshirani
(1990) and the more recent works of Chen and Tsay (1993), Tjøstheim and Aues-
tad (1994), Linton and Nielsen (1995), Yang, Härdle and Nielsen (1999), Sperlich,
Tjøstheim and Yang (2002), and Yang, Sperlich and Härdle (2003), which applied
various kernel smoothing techniques. Huang and Yang (2004), on the other hand,
employed spline smoothing methods.
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As with any estimation procedure, confidence regions provide more informa-
tion than a single estimate can. With nonparametric smoothing, however, con-
fidence bands for the regression functions have proven to be one of the more
challenging problems, and existing literature is rather limited and narrow in
scope. The early works of Hall and Titterington (1988), Härdle (1989) estab-
lished asymptotic confidence band of nonparametric regression function which
are univariate, based on Nadaraya-Watson kernel smoothing. This line of re-
search has been extended to the more efficient local polynomial kernel smoothing
in Xia (1998), which has further developed into bootstrap procedure in Claeskens
and Van Keilegom (2003). All of the aforementioned methods involve local aver-
aging by kernel weights, and requires solving a linear least squares problem for
every design point. In contrast, Wang and Yang (2006) propose new confidence
bands based on the polynomial spline method, which obliges the user to solving
merely one linear least squares problem, and is practically as easy to implement
and fast as a simple linear regression with slowly increasing number of parame-
ters. Such nonparametric confidence bands, however, does not exist for estima-
tion of additive regression function. Techniques based on kernel smoothing reply
on complicated backfitting or averaging algorithms [also known as projection in
Tjøstheim and Auestad (1994) and marginal integration in Linton and Nielsen
(1995)], from which it is extremely difficult to construct confidence bands. Spline
technique is therefore chosen for tackling this difficult problem.

In this paper the spline confidence band for univariate regression in Wang
and Yang (2006) is extended to confidence band of multivariate additive regres-
sion. In section 2, I propose an asymptotically conservative confidence band for
the nonparametric autoregression function. Intuitive justifications are given for
the procedure, which is based on wild bootstrap. In section 3, I examine the
properties of the procedure through simulation study and discuss the issues in
implementation. Section 4 concludes.

2. Additive Confidence Band

The additive regression model is of the form

Y = m (X) + ε,X = (X1, ...,Xd) ,m (X) = c +
d∑

α=1

mα (Xα) (2.1)

with E (ε) = 0, var (ε) = σ2 and the identification condition that Emα (Xα) ≡
0, α = 1, ..., d. Given a sample {Yi,Xi}n

i=1 = {Yi,Xi1, ...,Xid}n
i=1 generated from

(2.1), estimators of the functions {mα (xα)}d
α=1 and m (x) can be constructed by

employing either kernel or spline smoothing. In this section, I describe the spline
estimator m̂ (x) of m (x) and the construction of a conservative confidence band
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based on m̂ (x).
One needs to first introduce the spline basis of order p (p ≥ 1) as the following

set of piecewise polynomials

B1,β (xβ) = xβ, ..., Bp,β (xβ) = xp
β

Bp+1,β (xβ) =
(
xβ − t

(1)
β

)p

+
, ..., Bp+N,β (xβ) =

(
xβ − t

(N)
β

)p

+

in which
{

t
(J)
β

}N

J=1
are equally spaced points on the range of variable Xβ , called

knots. To be precise, denote the compact support of the density fβ (xβ) of variable
Xβ as [aβ, bβ ], then

t
(J)
β = aβ + J (bβ − aβ) (N + 1)−1 , J = 1, ..., N

where the number of knots N = Nn =
[
kn1/(2p+3)

]
, in which k is a tuning

constant. One then define for any x = (x1, ..., xd)

m̂ (x) = λ̂0,1 +
d∑

α=1

p+N∑
L=1

λ̂L,αBL,α (xα) (2.2)

where the coefficients
(
λ̂0,1, λ̂1,1, ..., λ̂p+N,d

)
are solutions of the following least

squares problem

λ̂ =
{

λ̂0,1, λ̂1,1, ..., λ̂p+N,d

}T

=
argmin

R1+dp+N)

n∑
i=1

{
Yi − λ0,1 −

d∑
α=1

p+N∑
L=1

λL,αBL,α (Xiα)

}2

. (2.3)

Although splines of any order p ≥ 1 can be employed, the simplicity of linear
splines (with p = 1), which are piecewise linear functions, makes them especially
appealing. Thus in this paper I have used only linear splines. The tuning con-
stant is set to k = 1, which is not crucial based on observation from extensive
simulation. In what follows, a confidence level 1 − α ∈ (0, 1) is fixed, whose
default is 0.95. The main goal is to construct simultaneous confidence intervals

for the value of function m (x) at each point x ∈X =
d∏

β=1

[aβ , bβ], in other words,

a confidence band for the function m (x) over X .
For univariate spline regression (d = 1), Huang (2003) had obtained asymp-

totic pointwise confidence intervals of level (1 − α) in the form of m̂(x)± σm̂(x)·
z1−α/2, in which z1−α/2 is the (1 − α/2)-quantile of the standard normal distribu-
tion, m̂ (x) is as defined in (2.2) while σm̂ (x) is its standard error, whose explicit
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formula is contained in Huang (2003) in the conditional form, and Wang and
Yang (2006) in the unconditional form. The latter had employed the Brownian
bridge strong approximation theorem of Tusnády (1977) to obtain the following
simultaneous confidence intervals based on linear spline estimator

m̂ (x) ± σm̂ (x) {2 log (N + 1) − 2 log α}1/2 = m̂ (x) ± σm̂ (x)
√

χ2
2,1−α/(N+1)

where I denote by χ2
t,1−α the (1 − α)-quantile of the chi-square distribution with t

degrees of freedom. Comparing the pointwise confidence interval of Huang (2003)
and the simultaneous confidence intervals (i.e., a confidence band) of Wang and
Yang (2006), one clearly see that both are centered at m̂ (x), while simultaneity is
achieved by inflating the pointwise interval at the ratio of z−1

1−α/2

√
χ2

2,1−α/(N+1),

or
√

χ2
2,1−α/(N+1)χ

−2
1,1−α. It was established in both Huang (2003) and Wang and

Yang (2006) that σm̂ (x) is of order n−2/5, hence the confidence band has a bound
of order n−2/5

√
log (n) for its width throughout the interval [a1, b1].

In the case of additive model (2.1), the deviation of m̂ (x) from m (x) is to
be bounded on a total of (N + 1)d d-dimensional intervals. On each interval, the
deviation comes from each of the d variables. Hence the degree of freedom for
the chi-square quantile in the inflation ratio is 2d, while the tail probability is
1 − α/ (N + 1)d. Hence the inflation ratio is naturally z−1

1−α/2

√
χ2

2d,1−α/(N+1)d .

In the case of univariate regression (i.e. d = 1), the ratio is the exact same
one proved in Wang and Yang (2006). In addition, the confidence band should
have a bound of order n−2/5

√
log (n) for its width throughout the compact set

X =
d∏

β=1

[aβ, bβ ]. A rigorous proof of this asymptotic result would be feasible if

strong approximation result as sharp as Tusnády (1977) would be available for
d + 1 dimensions.

Wang and Yang (2006) has used a plug-in procedure to estimate σm̂ (x) in
the construction of the confidence band. The plug-in method, however, requires
additional smoothing steps which may render the results less accurate, and hence
has been replaced in this paper with wild bootstrap for improved performance.
The steps are described here. In the following, I define the residuals ε̂i = Yi −
m̂ (Xi) , 1 ≤ i ≤ n, and denote a predetermined large integer by nB, whose default
value is 400.

Step 1 Let {δi,b}1≤b≤nB

1≤i≤n be i.i.d. samples of the following discrete distribution

δi,b =
{

2−1
(
1 −√

5
)

with probability 10−1
(
5 +

√
5
)

2−1
(
1 +

√
5
)

with probability 10−1
(
5 −√

5
) ,
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1 ≤ i ≤ n, 1 ≤ b ≤ nB . One can verify that each δi,b defined above satisfies
E (δi,b) ≡ 0, var (δi,b) ≡ 1.

Step 2 For any 1 ≤ b ≤ nB, define the b-th wild bootstrap sample

Yi,b = m̂ (Xi) + δi,bε̂i, 1 ≤ i ≤ n. (2.4)

Next, replace the response Yi in (2.3) with Yi,b and then solve the following
least squares problem

λ̂b =
argmin

R1+d(p+N)

n∑
i=1

{
Yi,b − λ0,1 −

d∑
α=1

p+N∑
L=1

λL,αBL,α (Xiα)

}2

and obtain the b-th bootstrap estimator of m (x)

m̂(b) (x) = λ̂0,1,b +
d∑

α=1

p+N∑
L=1

λ̂L,α,bBL,α (xα) . (2.5)

Step 3 Denote by m̂L,α/2 (x) and m̂U,α/2 (x) respectively the lower and upper
100 (1 − α/2) % quantiles of the set

{
m̂(b) (x)

}
1≤b≤nB

, obtained from (2.5)
for each of the bootstrap sample in (2.4). The wild bootstrap (1 − α)
pointwise confidence interval for function value m (x) at one point x is[
m̂L,α/2 (x) , m̂U,α/2 (x)

]
.

Step 4 Denote the wild bootstrap (1 − α) confidence band for the function m (x)
over X as

[
m̂L,α/2 (x) , m̂U,α/2 (x)

]
,x ∈ X . As mentioned earlier, the uni-

form confidence band needs to be wider than the pointwise confidence in-
terval by a factor of z−1

1−α/2

√
χ2

2d,1−α/(N+1)d when localized at any point,

hence I define

m̂L,α/2 (x) = m̂ (x) +
{

m̂L,α/2 (x) − m̂ (x)
}

K (2.6)

m̂U,α/2 (x) = m̂ (x) +
{

m̂U,α/2 (x) − m̂ (x)
}

K, (2.7)

where K = z−1
1−α/2

√
χ2

2d,1−α/(N+1)d .

The justification for making use of the wild bootstrap sample (2.4) is the same
as in Sperlich, Tjøstheim and Yang (2002), i.e., the sample {Yi,b,Xi}n

i=1 mimmicks
the dependence structure of sample {Yi,Xi}n

i=1 up to second order. Intuitively
this is seen from the aforementioned fact that E (δi,b) ≡ 0, var (δi,b) ≡ 1 and
therefore each δi,bε̂i has the same mean and variance as ε̂i, approximately 0 and
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σ2. In the next section, I will demonstrate the excellent practical performance of
the proposed band by applying it to simulated examples.

3. Monte Carlo Study

To evaluate the performance of the confidence band defined in (2.6) and (2.7),
the following Monte Carlo study has been carried out. The data generating model
is an additive regression model of the form

Yi = c +
d∑

β=1

mβ (Xiβ) + εi, 1 ≤ i ≤ n, c = 2,mβ (xβ) = sin (2πxβ) , 1 ≤ β ≤ d

(3.1)
with predictor vector Xi = (Xi,1, ...,Xi,d) i.i.d. U [0, 1]d and the error εi i.i.d.

N (0, 1). A total of 100 replications
{

Y
(k)
i ,X(k)

i

}n,100

i=1,k=1
are generated according

to model (3.1) for sample sizes n = 50, 100, 200, 400 and dimensions d = 2, 4,
and the 95% conservative confidence band computed for each replication. All
computing has been carried out in the environment of XploRe [see, for example,
Härdle, Hlavka and Klinke (2000)] or visit the link

http://www.quantlet.com/mdstat/scripts/xag/html/xaghtml.html

The simulation attempts to address three questions: First, does the conserva-
tive confidence band given in (2.6) and (2.7) contains the additive function with
empirical frequencies higher than the predetermined confidence level? Second,
is the conservative confidence band too wide? Third, how much computing is
needed to produce the confidence band?

The answer to the first question is extremely positive: for all the experiments,
it is observed that the empirical frequencies of coverage are 100% in all cases.
Hence the constructed band is indeed conservative in terms of coverage.

To address the second and third questions, I have plotted the bands as well
as the true additive function against the first variable X

(20)
i,1 , in Figures 1 and 2,

for the 20-th replication of each dimension d, sample size n combination. To be
precise, the plots are made by connecting points{

X
(20)
i,1 , m̂L,0.025

(
X(20)

i

)}n

i=1
,
{

X
(20)
i,1 , m̂U,0.025

(
X(20)

i

)}n

i=1

(thin lines) and {
X

(20)
i,1 ,m

(
X(20)

i

)}n

i=1

(thick line) respectively. For each dimension d, sample size n combination, I have
also recorded in Table 1 the average runtime of one replication, as well as
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Confidence band for n=50, d=2
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Confidence band for n=200, d=2
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Figure 1: Confidence bands constructed from the 20-th data set generated
by model (3.1). The thin lines are the band’s lower and upper boundaries{
X

(20)
i,1 , m̂L,0.025

(
X(20)

i

)}n

i=1
and

{
X

(20)
i,1 , m̂U,0.025

(
X(20)

i

)}n

i=1
respectively,

while the thick line is plot of the true function
{
X

(20)
i,1 , m

(
X(20)

i

)}n

i=1
.

the average of the width of the confidence bands over all sample points, and all
100 replications of the same dimension d, sample size n combination. The runtime
values are recorded for experiments carried out on a Dell notebook, while the
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Confidence band for n=50, d=4
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Confidence band for n=100, d=4
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Confidence band for n=200, d=4
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Confidence band for n=400, d=4
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Figure 2: Confidence bands constructed from the 20-th data set generated
by model (3.1). The thin lines are the band’s lower and upper boundaries{
X

(20)
i,1 , m̂L,0.025

(
X(20)

i

)}n

i=1
and

{
X

(20)
i,1 , m̂U,0.025

(
X(20)

i

)}n

i=1
respectively,

while the thick line is plot of the true function
{
X

(20)
i,1 , m

(
X(20)

i

)}n

i=1
.

mean width of confidence band is defined as

1
100

100∑
k=1

1
n

n∑
i=1

{
m̂U,α/2

(
X(k)

i

)
− m̂L,α/2

(
X(k)

i

)}
.

From Figures 1 and 2, one can see that the band narrows for the 20-th sample
as sample size n increases. This is corroborated by the confidence bands’ mean
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widths in Table 1, which decreases as sample size increases, thus the confidence
bands are not ”too conservative” so to speak. Table 1 also shows that the runtime
for constructing one confidence band is less than one second when n = 400, hence
the computing burden is extremely light.

Table 1: Asymptotic performance and computing cost of the additive confi-
dence band

Sample Mean widths of Mean widths of Mean runtime
size n confidence band (d = 2) confidence band (d = 4) (seconds)

50 2.735 4.935 0.15
100 2.016 2.993 0.27
200 1.296 2.729 0.45
400 1.318 2.119 0.88

4. Conclusions

In this paper, a method is proposed for constructing confidence band of addi-
tive nonparametric regression function, filling one significant current gap in sta-
tistical literature. The band covers the true regression function with frequency
much higher than the nominal confidence level, can be computed within frac-
tions of a second, and becomes narrower rather rapidly with increasing sample
size. These three features make the proposed confidence band very appealing for
application.

The idea of this paper could be easily extended to related regression models.
For instance, the recent works of Xue and Yang (2006a,b) have made both ker-
nel and spline estimation available for the so-called additive coefficient model, a
class of model that includes as special cases additive model, functional coefficient
model, and varying coefficient model. It is conceivable that similar confidence
band could be constructed for this broad model class.
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