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Abstract: Believe the Positive (BP) and Believe the Negative (BN) rules
for combining two continuous diagnostic tests are compared with proce-
dures based on likelihood ratio and linear combination of the two tests. The
sensitivity-specificity relationship for BP/BN is illustrated through a graph-
ical presentation of a ”ROC surface”, which leads to a natural approach of
choosing between BP and BN. With a bivariate normal model, it is shown
that the discriminating power of this approach is higher when the correla-
tion between the two tests has different signs for non-diseased and diseased
population, given the location and variations of the two distributions are
fixed. The idea is illustrated through an example.

Key words: Believe the Negative (BN), believe the Positive (BP), bivariate
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1. Introduction

The statistical properties of single diagnostic tests have been extensively stud-
ied. For a test with a continuous scale, the Receiver Operating Characteristic
(ROC) curve is widely used as a method to characterize the accuracy of the diag-
nostic test. ROC displays the sensitivity versus 1-specificity achieved at different
cut-off points applied to the test score. The area under the ROC curve (AUC)
provides a measurement of the overall accuracy of the diagnostic test of interest
by averaging the sensitivity at various specificity levels. Such an index also cor-
responds to the probability that a randomly selected diseased subject has higher
test score than does a randomly selected non-diseased subject (assuming diseased
population has higher mean test score than the non-diseased population).

When there is more than one diagnostic test, diagnostic accuracy can be
improved by combining these tests. Simple methods of combining two diagnostic
tests such as Believe the Positive (BP) and Believe the Negative (BN) have been
widely used in many clinical settings. BP says that a subject is overall positive
if either of the two tests is positive and BN says a subject is overall positive only
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if both tests are positive. When the measurements of the two individual tests
are continuous, separate cut-off points are applied to each test. Then BP (BN)
states that a subject is overall positive if either (both) test measurement(s) is (are)
greater than the corresponding cut-off point(s). When the cut-points are fixed for
the two tests, it is easy to see that (i) BP improves the sensitivity over either test
at the cost of specificity and (ii) BN improves the specificity over either test at the
cost of sensitivity. Another popular approach of combining two continuous tests
is to construct a new measurement that is a linear combination of the two tests
under consideration and a threshold is applied to the new measurement (Su and
Liu, 1993). In Figure 1, we show the overall positive region in a two-dimensional
plane for these three simple approaches, where the two dimensions correspond to
the two test measurements.
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Figure 1: Overall positive region for BP, BN and Linear Combination rules.
Shadowed area refers to the overall positive region.

In the view of hypothesis test, diagnosis can be thought of as a simple hy-
pothesis test such that the null hypothesis is that the score of a subject is drawn
from the non-diseased population and the alternative hypothesis the test score



Principles of Believe the Positive and Believe the Negative 191

is drawn from the diseased population (Pepe, 2003). Then sensitivity and 1-
spectificy correspond to the power and the type I error rate. For the screening
phase of medical study of a rare disease, often we want to maximize the yield
of the screening given a tolerable specificity level. Then the problem becomes
seeking the most powerful test at a fixed type I error rate, which can be achieved
by the likelihood ratio test based on the Neyman-Pearson lemma. However, even
for simple parametric models of the distribution of the two diagnosis test scores,
such a procedure is rather cumbersome for practical application in the screening
phase, in which a large number of subjects are examined. For example, in a large
disease screening or clinical study, many of the tests are conducted in a biological
lab, where the test results are first recorded on papers and then are put into an
electronic database later on. For many diseases, some extra clinical procedures
will be scheduled/conducted right away if the tests just completed imply disease
status for ethical and screening/study efficiency reasons. Therefore, a quick and
straight forward way to make such a decision based on these tests is in need,
where numerical calculations should be minimized. Moreover, in most scenarios,
a parametric model is difficult to conjecture. Thus, the practical problem is to
seek a simple sub-optimal procedure to combine more than one test. Therefore,
research on the properties of simple methods as shown in Figure 1 is of great
practical significance.

The ROC generated by the likelihood ratio test obviously is the optimal one
because its sensitivity is maximized at each specificity level. Since likelihood ratio
test under many parametric univariate models (e.g. normal distribution) reduces
to applying the cutoff point to the test score, sensitivity is often maximized for
a given specificity level under such models. In the scenario of two continuous
diagnostic tests, however, it is not clear how the simple rules in Figure 1 compare
with the optimal one. Moreover, there are few guidelines on the usage of BP and
BN rules, though there has been some literature on the optimal linear combination
of two continuous tests that maximizes the AUC (Pepe and Thompson, 2000; Su
and Liu, 1993) among all possible linear combinations. In this paper, we try to
address some properties of BP and BN as to when and how to apply them to
maximize the power of disease detection, using the model of bivariate normal
distribution. Specifically, we will discuss the following issues:

(a) How is the ROC curve based on BP/BN compared with the optimal one?
When does BP/BN perform better than the best linear combination?
(b) When should we choose BP or BN?
(c) Under what condition (if possible) is BP/BN powerful in terms of their capa-
bility of discriminating diseased from non-diseased?

We address question (a) in Section 2 and (b) and (c) in Section 3. We conclude
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this paper with a discussion section.

2. A Comparison of ROC Curves

In this section, we compare the ROC curves based on the likelihood ratio
test (LR), BP, BN and the best linear combination of the two tests (LIN) (Su
and Liu, 1993). The aims are to seek some guidelines as to how much power we
lose using BP, BN or LIN as compared with LR and which of these three rules
are better. We first introduce some notation to facilitate the discussion in this
and later sections. Let X = (X1,X2) be a vector of two continuous tests such
that diseased subjects have larger mean values on both tests than non-diseased
subjects. Let D and N denote diseased and non-diseased population, respec-
tively; F1,N (·), F2,N (·) and FN (·, ·) denote the cumulative distribution function
(CDF) of X1, the CDF of X2 and the joint CDF of X1 and X2 for non-diseased
population, respectively; F1,D(·), F2,D(·) and FD(·, ·) are similarly defined for the
diseased population; SN (·, ·) and SD(·, ·) are the joint survival function of X1

and X2 (e.g. SN (c1, c2) = Pr[X1 ≥ c1,X2 ≥ c2 |N ]) for the non-diseased and
diseased population, respectively. For bivariate normal distribution, we will use
µN = (µN1, µN2)T to denote the mean vector and ΣN to denote the variance-
covariance matrix composed of variances of X1 and X2 (σ2

N1 and σ2
N2) and their

covariance based on correlation ρN for the non-diseased population. Similarly, we
use (µD,ΣD) to denote the same set of parameters for the diseased population.

Under the bivariate normal distributions, it is easy to show that the LR
essentially claims test positive when

Y = (X − µN )T Σ−1
N (X − µN ) − (X − µD)T Σ−1

D (X − µD) > c1 (2.1)

As for BP/BN, they claim test positive when

X1 > c2 or/and X2 > c3 (2.2)

Finally, the LIN claims test positive when

W = X1 + aX2 > c4 (2.3)

where a = b2/b1 and (b1, b2) = (ΣD + ΣN )−1(µD − µN ). The sensitivity and
specificity of the above methods will depend on the values of c1 to c4. The
major difference of the BP and BN from the other two rules lies in that there
is more than one sensitivity value corresponding to a fixed specificity, which we
will illustrate with greater detail in a later section. Nevertheless, we can use the
maximum of these sensitivity values and plot it against each 1-specificity value,
which we will call the maximum ROC (MROC) curve (Thompson, 2003). Then
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MROC reflects the capability of discriminating diseased from non-diseased for
BP/BN. In summary, the (maximum) sensitivity (s) at a specificity value (1− t)
of the four methods can be calculated as:

sLR = 1 − GD(G−1
N (1 − t))

sBP
M = max

FN (c2,c3)=1−t
1 − FD(c2, c3)

sBN
M = max

SN (c2,c3)=t
SD(c2, c3)

sLIN = 1 − HD(H−1
N (1 − t))

where G and H are the CDFs of Y and W , respectively, and the subscript M for
BP and BN stands for maximum. Under the bivariate normal distribution, the
quantities listed above cannot be calculated analytically and numerical methods
are required.

We created the ROC curves for LR and LIN and MROC curves for BP and
BN under various parameter combinations. Under all calculations, we set µN =
(0, 0)T , µD = (0, 0)T , and vary the variance-covariance structure for the diseased
and non-diseased. First, we fix the correlation between the two diagnostic tests at
0 for both diseased and non-diseased. The result is shown in Figure 2. Under all
four scenarios, at least one of BP and BN is quite close to the LR. Except when
the two populations have the same variance-covariance matrix (a), at least one
of BP and BN is at least as good as LIN at high specificity level (e.g. specificity
> 0.9, or equivalently, 1− specificity < 0.1) uniformly. In particular, for quite a
broad range of the specificity at high level end, BN beats LIN when the variances
of the diseased are smaller than the non-diseased (b) and BP beats LIN when
the variances of the diseased are greater than the non-diseased (c). LIN has the
same ROC as the LR in (a). Simple algebra shows that this is because the LR
reduces to LIN when the variance-covariance matrix is the same between the two
populations. Second, we fix the standard deviations of the two variables for the
two populations at 1 and vary the correlation. The result is shown in Figure 3.
Except (h), either BP or BN is quite close to the LR. For (f) (positive correlation
in non-diseased and negative correlation in diseased) and (g) (negative correlation
in non-diseased and positive correlation in diseased), either BP or BN is at least
as good as LIN for a broad range of specificity at high level end. Since the
diseased and non-diseased populations have the same variance-covariance matrix
in (e) and (h), LIN is the same as LR.
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Figure 2: (M)ROC curves of LR, LIN, BP and BN for µN = (0.0)T , µD =
(1, 1)T and ρN = ρD = 0, (a)σN1 = σN2 = 1, σD1 = σD2 = 1, (b) σN1 =
σN2 = 1, σD1 = σD2 = 0.5, (c) σN1 = σN2 = 1, σD1 = σD2 = 1.5 and (d)
σN1 = σN2 = 1, σD1 = 1.5, σD2 = 0.5.
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Figure 3: (M)ROC curves of LR, LIN, BP and BN for µN = (0, 0)T , µD =
(1, 1)T and σN1 = σN2 = σD1 = σD2 = 1, (e) ρN = 0.4, ρD = 0.4, (f)
ρN = 0.4, ρD = −0.4, (g) ρN = −0.4, ρD = 0.4 and (h) ρN = −0.4, ρD = −0.4.

Since usually it is rather rare to observe the same variance-covariance matrix
between the diseased and non-diseased population, Figure 1 and 2 suggest that
either BP or BN is preferable to the LIN, at least at the high specificity level,
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which is usually what we desire. Then a natural thought would be to use the rule
(BP or BN) that has a greater sensitivity value (at a tolerable specificity level).
In next section, we discuss in further detail on this issue.

3. A Closer Look at BP and BN

3.1 ROC Surface

An ROC curve can be thought of as a graph of sensitivity versus the threshold
if we replace the 1-specificity value with the threshold applied to the diagnostic
test. It is natural to think that there should be a surface when there are two
variables. We define an ROC surface in this subsection, which essentially is a
stacking of infinitely number of ROC curves and allows one to visualize how
these ROC curves change and where the sensitivity reaches its maximum for a
fixed specificity level.

We first consider BP. Let p = F1,N (c2) be the specificity when using X1 as the
only test at threshold c2. Fix the specificity level at 1− t and we can obtain c3 by
solving the equation FN (F−1

1,N (p), c3) = 1 − t. We will denote the corresponding
solution by c3 = Q(t, F−1

1,N (p)). Then we can rewrite sBP as:

SBP = 1 − FD(F−1
1,N (p), Q(t, F−1

1,N (p))). (3.1)

Hence, sBP is a function of p and t. A plot of sBP against the two arguments
will be called an ROC surface, in which p is the X axis, t is the Y axis and sBP

is the Z axis. Each fixed p cuts through the surface and yields a ROC curve.
On the other hand, each fixed t cuts through the surface and yields a curve from
which one can identify the sBP

M . Note that

1 − t ≤ FN (c2,∞) = F1,N (c2) = p.

In other words, the specificity of the BP is always less than the specificity by
applying only one test as mentioned earlier. Then the domain of the ROC surface
of the BP is the upper triangle of the unit square [0, 1]× [0, 1]. Similar reasoning
can be applied to the BN so that

SBN = SD(F−1
1,N (p), R(t, F−1

1,N (p))), (3.2)

where R(t, F−1
1,N (p)) is the solution of c3 for equation SN (F−1

1,N (p), c3) = t. Since
F2,N (c3) − FN (c2, c3) ≥ 0,

t = 1 − F1,N (c2) − (F2,N (c3) − FN (c2, c3)) ≤ 1 − F1,N (c2) = 1 − p.

Thus, the domain of the ROC surface of BN is the lower triangle of the unit
square [0, 1] × [0, 1]. In Figure 4, we show the ROC surface of BP and BN with



196 Changyu Shen

µN = (0, 0)T , σN1 = σN2=1 and ρN = 0=0, and µD = (1, 1)T , σD1 = σD2 = 1
and ρD = 0. In Figure 4, blue color represents the ROC surface of BP and orange
color represents the ROC surface of BN. The orange curve corresponding to p = 0
and the blue curve corresponding to p = 1 are identical, both of which are the
ROC curve when applying X2 as the only test. The projection of the curve where
the blue surface meets the orange surface onto the t − s plane is the ROC curve
when applying X1 as the only test. We show in Figure 5 three ROC curves cut
off from the ROC surface at different values of p.

Figure 4: ROC surface BP and BN for µN = (0, 0)T , σN1 = σN2 = 1 and
ρN = 0, and µD = (1, 1)T , σD1 = σD2 = 1 and ρD = 0 (blue: BP; orange:
BN).

For BP/BN, the MROC curve is the projection of a path on their ROC surface
to the t-s plane such that each point on the path corresponds to the maximum
sensitivity value achieved at corresponding specificity value (1 − t). It is well
known that the AUC of the ROC of a single test is equal to the probability
that the test score of a randomly selected diseased subject is higher than that
of a randomly selected non-diseased subject. Then a natural question is whether
or not there is a probabilistic interpretation of the AUC under the MROC as
in the single test scenario. For BP, intuition suggests that this quantity might
be equal to the probability (P ) that a randomly selected diseased subject has
at least one test score higher than that of a randomly selected non-diseased
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subject. Unfortunately, this is not true in general. A simple counter-example
is as follows. Suppose X1 and X2 are independent for both diseased and non-
diseased populations such that F1,N (x) = F2,N (x) = 1 − e−x and F1,D(x) =
F2,D(x) = 1 − 0.5e−0.5x. Thus X1 and X2 follow exponential distribution with
mean 1 and 2 for non-diseased and diseased populations, respectively. Straight
forward calculation shows that the AUC under the MROC is 11/15 and P = 8/9.
Similarly, it is not true for BN, either.
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Figure 5: Three ROC curves (BP and BN together) from the ROC surface in
Figure 2.

3.2 Choice between BP and BN

Since the performance of BP and BN depends on the parameter setting (Fig-
ure 2 and 3), one obvious way to choose between them is to use the maximum of
sBP
M (t) and sBN

M (t):
sM (t) = max{sBP

M (t), SBN
M (t)}.

This is equivalent to locating the maximum s on the path across the two surfaces
for fixed t (Figure 1). Then the maximum can be on the BP surface or on the
BN surface. Since such a path also includes the sensitivities achieved at each
individual test, sM (t) is greater than any one of them. We computed sM (t) for
the distributions shown in Figure 3. The curves are shown in Figure 6 with



198 Changyu Shen

orange indicating that sM is on the BN surface and blue indicating that sM is on
the BP surface. It can be seen that one rule (BP or BN) is always better than
the other when the correlation is of different sign. When the correlation sign is
the same, BN outperforms BP at high specificity region and the opposite occurs
at low specificity region. For example, one wants to use the BN rule to maximize
the sensitivity when t is smaller than 0.3 (specificity greater than 0.7) and use
BP rule when t is larger than 0.3 (specificity less than 0.7) under double-positive
and double-negative correlation scenarios.
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Figure 6: SM (t) under µN = (0, 0)T and σN1 = σN2 = 1 and µD = (1, 1)T

(Orange: sM (t) from BN; Blue: sM (t) from BP.

Opposite correlation signs between the non-diseased and diseased populations
tend to yield higher sensitivity in general. This is not surprising since different
correlation direction provides another ”dimension” to discriminate non-diseased
from diseased subjects. Particularly, negative correlation in the non-diseased and
positive correlation in the diseased yield higher sensitivity than others at high
specificity region, and positive correlation in the diseased and negative correla-
tion in the non-diseased yield higher sensitivity at low specificity region. For
the two situations where the two populations have the same sign for the corre-
lation, double-negative-correlation yields higher sensitivity than double-positive-
correlation uniformly in all specificity values. Therefore, one might want to choose
a pair of tests that have opposite correlation signs between the diseased and non-
diseased populations if possible. It appears that the double-positive-correlation
is the least favorable situation, which, unfortunately, is often what we deal with.
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In reality, we rarely know the true underlying distribution of the test mea-
surements for the diseased and non-diseased population. Usually, we will have
some data from subjects whose diseases status is known before we decide what
should be the test procedure. Then one can estimate sM (t) (denoted by ŝM (t))
by fitting a parametric distribution to the two variables and standard errors of
ŝM (t) can be estimated by Bootstrap (Efron and Tibshirani, 1993). A tool to con-
struct such parametric models is the copula functions (Nelsen, 1998). However,
it is sometimes difficult to specify a parametric distribution model in practical
application. Then an empirical approach by searching appropriate cut-off points
on the observed data can be applied. The search allows one to maximize the
sensitivity when the specificity value is restricted to be at least equal to a fixed
value. Specifically, let x1 = (x11, x21, . . . , xn1) and x2 = (x12, x22, . . . , xn2) be the
observed values of the two variables and d = (d1, d2, . . . , dn) be the disease status
indicator such that di = 1 indicates subject i has the disease and 0 otherwise.
Define

F̂D(c1, c2) =
n∑

i=1

I(xi1 ≤ c1, xi2 ≤ c2, di = 1)/
n∑

i=1

di

F̂N (c1, c2) =
n∑

i=1

I(xi1 ≤ c1, xi2 ≤ c2, di = 0)/
n∑

i=1

(1 − di)

ŜD(c1, c2) =
n∑

i=1

I(xi1 ≥ c1, xi2 ≥ c2, di = 1)/
n∑

i=1

di

ŜD(c1, c2) =
n∑

i=1

I(xi1 ≥ c1, xi2 ≥ c2, di = 0)/
n∑

i=1

(1 − di)

Then an empirical approach for fixed t seeks

ŝBP
M (t) = max

1−F̂N (c1,c2)≤t
1 − F̂D(c1, c2) (3.3)

ŝBN
M (t) = max

ŜD(c1,c2)≤t
ŜD(c1, c2) (3.4)

Often ŝBP
M (t) and ŝBN

M (t) are obtained at different specificity values and in general
not comparable. One can then decide which rule to choose based on relative
”importance” between sensitivity and specificity (Kraemer, 1992). The standard
errors of ŝBP

M (t) and ŝBN
M (t) can be easily estimated and are omitted here.
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3.3 An example

The Indianapolis Study of Health and Aging is an on-going longitudinal study
of dementia and Alzheimer’s disease in the elderly starting 1992 (Hendrie, Ogun-
niyi, Hall, Baiyewu, Unverzagt, Gureje, Gao, Evans, Ogunseyinde, Adeyinka,
Musick and Hui, 2001). The study participants are 2212 African Americans age
65 and older living in Indianapolis. A population-based two-phase survey (Pick-
les, Dunn and Vazquez-Barquero, 1995) was conducted at each data collection
wave. There was first an in-home screening followed by a full clinical assess-
ment for a subsample of participants selected based on the performance of the
screening test. The screen in the first phase is intended to select subjects with a
high chance to have dementia in a cost-efficient way. Currently, the Community
Screening Interview for Dementia (CSID) (Hall, Gao, Emsley, Ogunniyi, Morgan
and Hendrie, 2000) is used as the screen test, which consists of a cognitive assess-
ment of the study participants and an interview with a close relative (informant)
evaluating the daily functioning of the participants.
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Figure 7: Histogram of WL30 (30−WL) and WRR30 (30−WRR) for subjects
with dementia and normal subjects.

Here we consider using two continuous neuropsychological tests to discrimi-
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nate subjects with dementia from normal subjects. Since most, if not all, neu-
ropsychological tests are positive correlated, we do not have much choice in se-
lecting pair of tests based on their correlations. We choose two tests that are
used to measure the learning and memory function domains because dementia is
always accompanied by loss in these two domains. The first one is called Word
List Learning (WL) and the second one is called Word List Delayed Recall and
Recognition (WRR). For Word List Learning, 10 words are read to the partici-
pant in three different trials (same 10 words, different orders) and the participant
is asked to repeat the words at the end of each trial. For World List Delayed
Recall and Recognition, the participant is asked to repeat the 10 words after a
little while and recognize them from another list of 20 words read to them. The
maximum score of both X1 and X2 is 30. Since high-risk group tends to have
lower scores on both variables, two new variables are created for the implemen-
tation of our approach: WL30 = 30−WL and WRR30 = 30−WRR. We select
1046 subjects who had at least one clinical assessment, among which 266 were
diagnosed as dementia. WL and WRR scores right before the time of diagnosis
are selected for diseased subjects and the same scores at last neuropsychological
evaluation are selected for normal subjects. In Figure 7, we show the histogram
of WL30 and WRR30 for the two groups of subjects. It demonstrates that the
distributions of the two variables for subjects with dementia shifts towards the
right from the distributions of the normal subjects. The normality assumption
for normal subjects seems to be reasonable, though somehow questionable for the
other group. In Figure 8 we show ŝM (t) based on bivariate normal approximation
(blue and orange circle), ŝBP

M (t) (blue circle) and ŝBN
M (t) (orange circle) based on

(3.3) and (3.4). For comparison, we also included in the graph the ROC curves
from best linear combination of the two tests (bivariate normal approach and
distribution-free approach) (Pepe, 2000, 2003). It can be seen that all curves
are quite close to each other. In Table 1 we show the thresholds for WL30 and
WRR30 and associated sensitivity (S.E.) and specificity (S.E.) for BP and BN
based on numerical search. We use the first row as an example to illustrate how
to read the table. For BP, when the test positive is defined as WL30 greater or
equal to 27 (WL less or equal to 3) OR WRR30 greater or equal to 19 (WR less
or equal to 11), the sensitivity is 0.383 and specificity is 0.953; for BN, when the
test positive is defined as WL30 greater or equal to 19 (WL less or equal to 11)
AND WRR30 greater or equal to 18 (WR less or equal to 12), the sensitivity is
0.402 and specificity is 0.950. The BP and BN seem to perform quite similarly in
most cutoff points, though at certain situations one is better than the other one
(e.g. 6th and 7th row, BP is better than BN; 4th row, BN is better than BP).
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Figure 8: Different approaches based on WL30 and WRR30: ŝM from bivariate
normal distribution approximation (blue and orange circle), ŝBP

M from empirical
search (blue star) and ŝBN

M from empirical search (orange star), ROC curve of
best linear combination by a distribution-free approach (black mark sign).

4. Discussion

We have demonstrated that one of BP and BN principles, as a simple rule for
diagnosis based on two continuous tests, has favorable power in detecting diseased
subjects under most scenarios. It is our belief that application of the optimal
one (BP or BN, depending on the underlying distribution) is of great practical
feasibility and cost-effectiveness due to their simplicity and potential to improve
prediction accuracy as compared with each single test. In many clinical settings,
we want to balance the prediction accuracy and the cost. For example, in Section
3.3, first phase screen is conducted for every subject available at the corresponding
data collection wave to select demented subjects. We hope to include as many
demented subjects as possible at the price of some false positives. Hence, the
test in the screen phase does not need to be highly specific, yet it should be
sensitive enough to be cost-effective since every subject needs to go through
it. Currently, the selection process based on Community Screening Interview
for Dementia (CSID) involves categorizing the subjects into three performance
groups and a random sample is drawn from each group with different sampling
rates for the second phase assessment. The BP and BN rules can also be extended
to fit this framework and is subject to further investigation.

The focus in our work is the comparison and selection of the BP and BN due
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to their close connection so that prediction accuracy can be improved. Further-
more, the BP and BN discriminate non-diseased from diseased via the difference
in the correlation in addition to the difference in the location of the two distri-
butions. This property can be useful in guiding us in the search for candidate
tests for diagnosis. For example, tests for cancer aimed at the same anatomic
or morphologic features of a tumor, such as palpation and mammography can
be quite differently correlated for subjects with tumors than subjects without
tumors (Marshall, 1989). From another perspective, Marshall (Marshall, 1989)
discussed relationship between predictive value and asymmetry and strength of
the correlation of two binary tests.

Table 1: Thresholds of WL30 and WRR30 for BP and BN and associated sen-
sitivity (S.E.) and specificity (S.E.) based on numerical search on the observed
data points

BP BN

Sen Spe WL30 WRR30 Sen Spe WL30 WRR30
(S.E.) (S.E.) (S.E.) (S.E.)

0.383 0.953 27 19 0.402 0.950 19 18
(0.017) (0.008) (0.018) (0.008)

0.541 0.903 27 17 0.500 0.910 22 15
(0.018) (0.010) (0.018) (0.010)

0.624 0.859 25 16 0.650 0.859 20 14
(0.017) (0.012) (0.017) (0.012)

0.741 0.804 24 15 0.737 0.808 20 12
(0.016) (0.014) (0.016) (0.014)

0.827 0.751 22 15 0.801 0.769 19 12
(0.014) (0.015) (0.014) (0.015)

0.876 0.703 24 13 0.853 0.717 2 13
(0.013) (0.016) (0.013) (0.016)

0.914 0.665 22 13 0.895 0.656 2 12
(0.011) (0.017) (0.011) (0.017)

0.940 0.614 22 13 0.932 0.606 16 11
(0.009) (0.017) (0.009) (0.017)

0.959 0.554 23 11 0.955 0.564 17 10
(0.007) (0.018) (0.007) (0.018)

0.970 0.542 20 12 0.970 0.512 15 10
(0.006) (0.018) (0.006) (0.018)

Sen = Sensitivity, Spe = Specificity for short

In summary, the specialty of choosing between BP and BN for two continuous
tests lies in its balance in simplicity and discriminating power. Performance of
such a procedure is most favorable when the correlation of the two tests has differ-
ent signs between the diseased and non-diseased population under the bivariate
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normal model. Although it is straight forward to generalize the idea to more
than two continuous tests, the intensive computational burden and the ”curse
of dimensionality” tremendously limit its practical implementation. Many alter-
native approaches might be more efficient such as CART, adaptive thresholds
(Thompson, 2003) and so on for more than two continuous tests.
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