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Abstract: In modeling and analyzing multivariate data, the conventionally
used measure of dependence structure is the Pearson’s correlation coeffi-
cient. However use of the correlation as a dependence measure has several
pitfalls. Copulas recently have emerged as an alternative measure of the de-
pendence, overcoming most of the drawbacks of the correlation. We discuss
Archimedean copulas and their relationships with tail dependence. An algo-
rithm to construct empirical and Archimedean copulas is described. Monte
Carlo simulations are carried out to replicate and analyze data sets by iden-
tifying the appropriate copula. We apply the Archimedean copula based
methodology to assess the accuracy of Doppler echocardiography in deter-
mining aortic valve area from the Aortic Stenosis: Simultaneous Doppler –
Catheter Correlative study carried out at the King Faisal Specialist Hospital
and Research Centre, Riyadh, KSA.
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1. Introduction

In medical studies, there are several treatments to compare and/or repeated
measurements over time or prognostic factors to consider which lead to the multi-
variate and multi-dimensional data sets. A statistical challenge is to find models
of populations that have wide applicability to real data. The normal or Gaussian
distribution is one such statistical model. The statistical theory and methods
associated with the normal distribution have many desirable mathematical prop-
erties like simplicity, analytical manageability and easy estimation of its only
parameter, the correlation matrix. However empirical evidence suggests that the
use of normal/multinormal distribution is inadequate in many situations (Mar-
shal, Naldi and Zeevi, 2003). Whenever the assumption of normality fails, the
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extreme endpoints are more probable than anticipated by normal distribution not
only in marginals but also in higher dimensions. For example, Gross and Lam
(1981) in studying the survival distribution considered a bivariate exponential
model with their marginals exponentially distributed and not a bivariate normal
model to analyze data on a group of patients with transient conditions such as
pain from chronic illness. Therefore, the assumption that a given data set is
modeled adequately by a normal distribution is extremely important and should
be tested prior to analyzing data.

An important issue in modeling is the choice of the appropriate dependence
measure. The commonly practiced dependence measure is the Pearson’s correla-
tion coefficient (r). However correlation as a measure of dependence has several
drawbacks (Embrechts, McNeil and Straumann, 1999; Frees and Valdez, 1998;
Schweizer and Wolff, 1981; Schweizer, 1991). Correlation is not a complete de-
scription of dependence structure even when there is a straight-line relationship
between two random variables. Correlation is a canonical measure of the stochas-
tic dependence used with normal (elliptical) distributions. It is strongly affected
by extreme endpoints. Independence of two random variables implies they are
uncorrelated but zero correlation in general does not imply independence un-
less the distributions are multivariate normal. Correlation is not invariant under
non-linear strictly increasing transformations of random variables. Other clas-
sical non-parametric measures of dependence are Spearman’s rank correlation ρ
and Kendall’s rank correlation τ . Both ρ and τ measure the degree of mono-
tonic dependence while r measures the degree of linear dependence only. The
advantage of rank correlations ρ and τ over r is that these are invariant under
monotonic transformations.

An alternative to measure the dependence structure is copulas which overcome
the limitations of correlation as a dependence measure (Sklar, 1959; Nelson, 1999;
Genest and Rivest, 1993; Joe, 2005; Marshall and Olkin, 1988). Copulas are
relatively a new concept and have been applied frequently in survival analysis, risk
management and actuaries. Copulas are functions that join or couple multivariate
distribution functions to their one-dimensional marginal distribution functions
where the one-dimensional marginals are uniform on the interval [0, 1]. There are
several advantages of using copulas as dependence measures like copulas allow
modeling both linear and non-linear dependence, any choice of a marginal can
be used and extreme endpoints can also be modeled. In this paper, we describe
the copula based simulation methodology which can be used in analyzing medical
studies. We illustrate the application by analyzing the patients’ data from the
Aortic Stenosis: Simultaneous Doppler – Catheter Correlative study (Fawzy et
al.,1995). The Monte Carlo simulations are carried out to replicate and analyze
the data sets.
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2. Methodology

2.1 Study example

The study example is taken from a research study (Fawzy et al.,1995) to as-
sess the accuracy of Doppler echocardiography (DE) in determining aortic valve
area (AVA). A prospective study consisting of 30 patients aged 17-82 years with
a clinical diagnosis of aortic stenosis and with no or mild aortic regurgitation and
with no or mild mitral regurgitation was undertaken at the King Faisal Special-
ist Hospital and Research Centre. All patients underwent simultaneous Doppler
echocardiograpic (DE) and cardiac catheterization (CC) with dual catheters in
the ascending aorta and left ventricle using the transeptal technique. The catheter
maximum gradient, mean gradient and AVA using Gorlin’s formula were calcu-
lated. The DE data consisted of maximum gradient, mean gradient and AVA by
continuity equation using velocity integral (method 1) and using maximum veloc-
ity (method 2). In this paper, however, we have considered data from CC AVA
(denoted as Y hereafter) and DE AVA method 1 (denoted as X hereafter). The
main question of interest is whether or not the non-invasive Doppler echocardio-
graphy technique is as accurate in identifying and assessing the severity of aortic
stenosis as validated by simultaneous catheterization.

2.2 Copula functions

Let the bivariate distribution of DE aortic valve area, X and CC aortic valve
area, Y be H(x, y) with marginal distributionsF (x) and G(y). Then for uniform
random variables U and V defined on [0, 1] (by using the probability transforms
U = F (X) and V = G(Y )), there exists a bivariate copula function or simply
copula C(u, v) such that

H(x, y) = Pr[X ≤ x, Y ≤ y] = C(F (x), G(y)) = C(u, v) (2.1)

It is discussed by Embrechts, McNeil and Straumann (1999) that the correla-
tion r is only a limited description of the dependence between random variables,
except for the multivariate normal distribution where the correlation fully de-
scribes the dependence structure. If F (x) and G(y) are continuous then C(u, v)
is unique, else C(u, v) is uniquely determined on range ofF (x)× range of G(y).
An important feature of copulas is that any choice of marginal distributions can
be used since copula links univariate marginals to their full multivariate distri-
bution. Hence copulas are constructed based on the assumption that marginal
distributions are known and in practice, by estimating the marginal distributions
from the sample.
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The two standard non-parametric dependence measures Kendall’s τ and Spear-
man’s ρ are expressed in the copula form as:

τ = 4
∫ 1

0

∫ 1

0
C(u, v)dC(u, v) − 1 (2.2)

ρ = 12
∫ 1

0

∫ 1

0
C(u, v)dudv − 3 (2.3)

Kendall’s rank correlation τ is estimated from the data (xi, yi), i = 1, 2, . . . , n
using:

τ =
2

n(n − 1)

∑
i<j

sign[(xi − xj)(yi − yj)] (2.4)

It may be noted that the simple correlation r is not expressible in copula form. A
special class of copulas termed as Archimedean copulas (Schweizer, 1991) is given
by C(u, v) = φ−1[φ(u) + φ(v)], for all u, v ∈ [0, 1] and where φ(·) is a generator
function containing parameter, θ, such that for all t ∈ (0, 1), φ(1) = 0, φ′(t) < 0,
i.e., φ(t) is decreasing function of t and φ′′(t) ≥ 0 i.e., φ(t) is convex. One-
parameter families of the Archimedean copulas with their generator functions
are tabulated in Nelson, (1999, page 94). Examples of bivariate Archimedean
copulas are given in Table 1. The parameter θ is estimated from (2.4) and
the relationship between θ and τ given in the last column of Table 1. The
parameter θ in each case measures the degree of dependence and controls the
association between the two variables. When θ → 0 there is no dependence and
if θ → ∞ there is perfect dependence. Schweizer and Wolff (1981) show that the
dependence parameter θ which characterizes each family of Archimedean copulas
can be related to Kendall’s τ .

Table 1: Bivariate Archimedean copulas, generator functions and Kendall’s τ .

Copula Generator φ(t) C(u, v) Kendall τ

Product (a) (b) 0
(Independent)
Clayton (c) (d) (e)
Gumbel (f) (g) (h)
Frank (i) (j) (k)
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The formulas in this table are given as follows:

(a) = −lnt

(b) = u · v
(c) = t−θ − 1, θ > 0
(d) = (u−θ + v−θ)−1/θ

(e) =
θ

(θ + 2)

(f) = (−lnt)θ, θ ≥ 1
(g) = exp[−{(−lnu)θ + (−lnv)θ}1/θ]

(h) =
(θ − 1)

θ

(i) = −ln
[
e−tθ − 1
eθ − 1

]
, θ ∈ R

(j) = −1
θ
ln
[
1 +

(e−uθ − 1)(e−vθ − 1)
(e−θ − 1)

]

(k) = 1 − 4
θ
[1 − D1(θ)],

where Dk(x) is the Debye function for any positive integer k, given by Dk(x) =
k
xk

∫ x
0

tk

et−1dt

For the given application data, the sample versions of measures of dependence
can be expressed in terms of empirical copulas and corresponding empirical copula
frequency function (Nelson, 1999, page 176).

Definition 1. Given (xi, yi), i = 1, 2, . . . , n a sample of size n from a bivariate
distribution, the empirical copula is C(i/n, j/n) = [Number of pairs (x, y) in the
sample such that x ≤ x(i) and y ≤ y(j)]/ n, where x(i) and y(j), 1 ≤ I, j ≤ n
denote order statistics from the sample. The empirical copula frequency function
is given by C(i/n, j/n) = 1/n if (x(i), y(j) is an element of the sample; 0 otherwise.

2.3 Tail dependence

Tail dependence refers to the amount of dependence in the tails of a bivariate
distribution or alternatively the dependence in the corner of the lower-left quad-
rant or upper-right quadrant of a bivariate distribution. The general dependence
structure, especially the dependence structure of extreme events, strongly influ-
ences the analysis and thus should be considered seriously during analysis. For
two random variables X and Y with marginal distributions F (x) and G(y), the
upper tail-dependence is defined as:
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λupper = lim
u→1

Pr[Y ≥ G−1(u) |X ≥ F−1(u)] (2.5)

and the lower tail dependence by symmetry as:

λlower = lim
u→0

Pr[Y ≤ G−1(u) |X ≤ F−1(u)] (2.6)

provided limits exist, for u ∈ (0, 1) and F−1(u) and G−1(u) are the inverse dis-
tribution functions of X and Y respectively. The distribution is upper (lower) tail
dependent if λupper (λlower) > 0 and upper (lower) tail independent if λupper (λlower) =
0.

2.4 Copula and tail dependence

The following representation shows that tail dependence is a copula property.
An equivalent definition (for continuous random variables) of tail dependence in
terms of a bivariate copula function C(u, v):

λupper = lim
u→1

1 − 2u + C(u, u)
1 − u

(2.7)

and

λlower = lim
u→0

C(u, u)
u

(2.8)

2.5 Algorithm to generate Archimedean copulas

The following algorithm generates random variables (U, V ) whose joint dis-
tribution is an Archimedean copula C(u, v) with generator function φ(t).

1. Generate two independent uniform random variables p and q on [0, 1].

2. Set t = K−1
C (q) where KC is a copula function C(u, v).

3. Set u = φ−1[pφ(t)] and v = φ−1[(1 − p)φ(t)].

4. Find x = F−1(u) and y = F−1(v)

5. Repeat n times steps 1 through 5 to generate n pairs of data (xi, yi), i =
1, 2, . . . , n.

For implementing the algorithm, the codes are given in Melchiori (2003). The
expressions for copulas considered in this paper are worked out and are given in
Table 2.
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Table 2: Algorithm implementation for Archimedean copulas.

Clayton Gumbel Frank

θ (a) (b) No closed form
φ(t) (c) (d) (e)
φ′(t) (f) (g) (h)
φ−1(t) (i) (j) (k)
KC (l) (m) (n)(

u
v

)
(o) (p) (q)

The formulas in this table are given as follows:

(a) =
2τ

1 − τ

(b) =
1

1 − τ

(c) = t−θ − 1
(d) = (−ln)θ

(e) = T =: −ln
[
e−tθ − 1
eθ − 1

]
(f) = −θ · t−θ−1

(g) = −θ(lnt)θ−1

t

(h) =
θ

1 − etθ

(i) = (1 + t)−1/θ

(j) = exp[−t1/θ]

(k) = − ln(1 − e−t + e−t−θ)
θ

(l) = t − t1+θ − t

θ

(m) = t − tlnt

θ

(n) = t − etθ − 1
θ

ln
[
e−tθ − 1
e−θ − 1

]

(o) =
(

(1 + p(t−θ − 1))−1/θ

(1 + (1 − p)(t−θ − 1))−1/θ

)



180 P. Kumar and M. M. Shoukri

(p) =
(

exp(−(p(−lnt)θ)1/θ)
exp(−{(1 − p)(−lnt)θ}1/θ)

)

(q) =

(
− ln(1−e−pT +e−pT−θ)

θ

− ln(1−e−(1−p)T +e−(1−p)T−θ)
θ

)

2.6 Which copula is the best?

The first step in modeling and simulation is to identify the appropriate copula
form. To identify the best copula for the given application data (xi, yi), i =
1, 2, . . . , n we carry out the following steps (Genest and Rivest, 1993; Frees and
Valdez, 1998):

1. Determine the pseudo observations Ti = { Number of (xj < xi) such that
xj < xi and yj < yi)/(n− 1), and the empirical copula KE(t) = proportion
of Ti ≤ t, 0 ≤ t ≤ 1.

2. Choose that copula which minimizes the non-parametric distance measure
DM =

∫
[KC(t) − KE(t)]2dKE(t).

3. Results

3.1 Application

The scatter plot of data on the aortic valve area in cm2 determined by Doppler
Echocardiology (AVADE) and Cardiac Catheterization (AVACC) from 30 pa-
tients aged 17-82 years is shown in Figure 1. The descriptive analysis indicates
that (i) AVADE and AVACC both have departures from symmetry (non signifi-
cant skewness coefficients being −0.191 and 0.141, respectively) and (ii) AVADE
and AVACC both have tendency of the observations to cluster less and have
shorter tails than those in normal distribution (nonsignificant kurtosis coefficients
being −0.631 and −1.003, respectively). To estimate the marginal distributions
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Figure 1: Aortic valve areas (cm2) measured by Doppler Echocardiograph
(AVADE) and Cardiac Catheter (AVACC).
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Figure 2: (a) Left panel: Lower tail dependence; (b) right panel: Upper tail
dependence.

of AVADE and AVACC, we have noticed from their probability plots that both
variables can be approximated by the normal distribution as well as gamma
distribution since the points clustered around a straight line. The estimated
normal and gamma distributions are: AVACC ∼ Normal (0.663, 0.217); AVADE
∼ Normal (0.67, 0.2) or AVACC ∼ Gamma (9.316, 14.045); AVADE ∼ Gamma
(11.194, 16.707). As a conventional measure of dependence between AVADE and
AVACC, we have calculated the correlation coefficient r = 0.701 (p < 0.0001)
and non-parametric Kendall’s rank correlation τ = 0.893 (p < 0.0001). Based
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Figure 3: Which copula is better?

on the assumption of normality, the estimates (M.) and 95% confidence intervals
(CI) of mean and difference (D) of AVADE and AVACE in cm2 are:

MDE = 0.6633 (95%CI = 0.5855, 0.7411)
MCC = 0.6700(95%CI = 0.5983, 0.7417)

D := MCC−DE = 00067
( one-tailed p = 0.35 and 95%CI = −0.0284, 0.0417)

For studying tail dependence, Figures 2a and 2b are obtained from (2.7), (2.8),
C(u, v) and the relationship between θ and τ given in Table 1. The Kendall’s τ
is estimated from the given data. It is noted from Figure 2a that when u → 0
the lower tail dependence tends to zero for both — normal and Gumbel copulas.
When u → 1 Figure 2b shows that the upper tail dependence for the normal
copula tends to zero, however, it remains almost constant for the Gumbel copula.
So, the tail dependence analysis indicates that the Gumbel copula have upper
tail dependence but does not have the lower tail dependence whereas the normal
copula have neither. Therefore, the conventional statistical analysis based on
the normality assumption and correlation as the measure of dependence is not
appropriate. A copula based analysis which models the tail dependence as well,
is a right choice to do the analysis.
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3.2 Simulation results

Three copulas of the Archimedean family, namely Gumbel (1960), Clayton
(1978) and Frank (1979) copulas, and empirical copula are estimated from the
application data. These are given in Figure 3. The values of non parametric
distance measure
DM =

∫
[KC(t)−KE(t)]2dKE(t) for the Gumbel, Clayton and Frank copulas are

respectively 6.6020, 6.9670 and 6.6960 from Figure 3, implying that the Gumbel
copula is the best fit.

To compare the difference in mean aortic valve area measured by Doppler
and Catheter, data are simulated using the Gumbel copula with the estimated
marginal distributions, both normal and gamma. For n = 30 patients, 50, 100
and 200 Monte Carlo simulations are performed to replicate data sets using the
Gumbel copula. The VBA codes provided in Melchiori (2003) are used for exe-
cuting the algorithm.

For the parameter mean difference of the aortic valve area measured by
Doppler and Catheter, point estimates, 95% confidence intervals and width of
the confidence

Table 3: Estimates of difference in means of aortic valve area (cm2) measured
by Doppler and Catheter from the application and simulated data using the
Gumbel copula with marginal distributions normal and gamma (n = 30 pa-
tients).

Simulation Estimate 95% Confidence Interval (CI) Width

D = MCC−DE Lower Limit Upper Limit of CI

Application 0.0067 -0.0284 0.0417 0.0701

Gumbel copula 50 0.0050 -0.0276 0.0376 0.0652
(Gamma margins) 100 0.0069 -0.0299 0.0399 0.0658

200 0.0078 -0.0253 0.0410 0.0663

Gumbel copula 50 0.0097 -0.1667 0.1710 0.3377
(Normal margins) 100 0.0048 -0.1652 0.1749 0.3401

200 0.0090 -0.1605 0.1798 0.3403

intervals are presented in Table 3. The results in Table 3 indicate that the
noninvasive Doppler Echocardiography technique is as accurate in identifying
and assessing the severity of aortic stenosis as the Catheterization.

It is interesting to note that the Gumbel copula with gamma marginals per-
formed better than the Gumble copula with normal marginals. The width of the
confidence intervals from gamma based Gumbel copula simulation is smaller than
the width of the confidence interval from the given data using standard method
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and also those from the normal marginals based Gumbel copula simulation. Thus,
the gamma distributions estimate marginal distributions better than the normal
distributions in the given data. Another noteworthy indicative conclusion which
is evident from Table 3 is that the confidence intervals and consequently their
width remain more or less the same for 50, 100 and 200 simulations. Thus, it is
not necessary to carry out a large number of simulations when using the copula
based methodology.

3.3 Copula versus correlation based methodology

Tail dependence analysis and estimated marginals distributions of the AVADE
and AVACC variables indicated the upper tail dependence and marginals to be
non-normal distributions and hence the application of copula based methodology.
For comparing two methods, the predicted aortic valve areas from both the copula
and correlation based prediction models and actual data are plotted in Figure 4.
As
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Figure 4: Predicted aortic valve areas using Gumbel copula and correlation
based prediction models.

expected, the predicted aortic valve areas from both models are close, however,
differences are noticeable for the measurements on the upper scale of the data.
This is because of copulas being a more appropriate dependence measure than
the correlation for the skewed endpoint data. Copula is capable of modeling the
linear and non-linear endpoint behavior of the measurements in either or both
directions.
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4. Discussions

In this paper, we envisage that the correlation coefficient is not a complete
description of dependence structure even when there is a straight-line relationship
between two random variables. An alternative to model the dependence structure
is using copulas which overcome the limitations of the correlation. Copulas are
functions that join or couple multivariate distribution functions to their one-
dimensional marginal distribution functions where the one-dimensional margins
are uniform on the interval [0, 1]. Copulas allow modeling both linear and non-
linear dependence. Using copulas, any choice of marginal distributions can be
used and extreme endpoints can be modeled.

Based on a study undertaken at the King Faisal Hospital and Research Center
to assess the accuracy of Doppler echocardiography as compared to the catheter-
ization in clinical diagnosis of aortic stenosis in heart patients, we have described
the copula based alternative methodology to model the dependence structure
between risk-factors, to simulate the data and its application in analyzing the
multifactor data. Since a number of families of copulas exist, this approach pro-
vides flexibility in modeling various categories of applications and simulating the
data. In clinical trials or medical experiments, sample size is often an important
consideration and is relatively small. Copula based methodology overcomes this
limitation as well, because the algorithm can be used to replicate data for any
number of patients. The suggested copula based methodology presented in this
paper is simple and easy to implement.

Acknowledgements

Authors thank the referee for the valuable comments. Authors also thank
the Research Centre, KFSH&RC for sponsoring the research project RAC# 2060
022.

References

Clayton, D. G. (1978). A model for association in bivariate life tables and its applica-
tions in epidemiological studies of familial tendency in chronic disease incidence.
Biometrika 65, 141-151.

Embrechts, P., Mcneil, A. J. and Straumann, D. (1999). Correlation and dependence
in risk management: properties and pitfalls. In Risk Management: Value at Risk
and Beyond (Edited by M. Dempster and H. K. Moffatt). Cambridge University
Press.

Fawzy, M. E., Awad, M., de Vol, E., El-Deeb, F., Andaya, W. and Duran, C. (1995).
Aortic stenosis: non-invasive assessment. Validation study by simultaneous Doppler



186 P. Kumar and M. M. Shoukri

catheterization. Technical Report, King Faisal Specialist Hospital and Research
Center.

Frank, M. J. (1979). On the simultaneous associativity of F (x, y) and x + y − F (x, y).
Aequationes Math. 19, 194-226.

Frees, E. W. and Valdez, E. (1998). Understanding relationships using copulas. North
American Actuarial Journal 2, 1-25.

Genest, C. and Rivest, L. (1993). Statistical inference procedures for bivariate Archimedean
copulas. Journal of the American Statistical Association 88, 1034-1043.

Gross AJ, Lam CF (1981). Paired observations from a survival distribution. Biometrics,
37:505-511.

Gumbel, E. J. (1960). Bivariate exponential distributions. Journal of the American
Statistical Association 55, 698-707.

Gumbel, E. J. (1960). Distributions des valeurs extremes en plusiers dimensions. Pub-
lication of the Institure of Statistics, University of Paris 9, 171-173.

Joe, H. (2005). Parametric families of multivariate distributions with given marginals.
Journal of Multivariate Analysis 46, 262-282.

Marshal, R., Naldi, M. and Zeevi, A. (2003). Comparing the dependence structure of
equity and asset returns. RISK 16, 82-87.

Marshall, A. W. and Olkin, I. (1988). Families of multivariate distributions. Journal
of the American Statistical Association 83, 834-841.

Melchiori, M. R. (2003). Which Archimedean copula is the right one? Yield Curve 37,
1-20.

Nelson, R. B. (1999). An Introduction to Copulas. Springer-Verlag.

Schweizer, B. (1991). Thirty years of copulas. In Advances in Probability Distribu-
tions with Given Marginals (Edited by G. Dall’Aglio, S. Kotz, G. Salinetti), 13-50.
Kluwer Academic Publishers.

Schweizer, B. and Wolff, E. F. (1981). On nonparametric measures of dependence for
random variables. Annals of Statistics 9, 879-885.

Sklar, A. (1959). Functions de repartition a n dimensions et leurs merges. Publication
of the Institure of Statistics, University of Paris 8, 229-231.

Received March 4, 2007; accepted March 24, 2007.



Aortic Stenosis Using Copulas 187

Pranesh Kumar
Department of Biostatistics
Epidemiology and Scientific Computing
King Faisal Specialist Hospital and Research Centre
MBC #03, P. O. Box 3354
Riyadh 11211, Saudi Arabia
kumarp@unbc.ca

Also:
University of Northern British Columbia
Prince George, BC
V2N 4Z9, Canada

Mohamed M. Shoukri
Department of Biostatistics
Epidemiology and Scientific Computing
King Faisal Specialist Hospital and Research Centre
MBC #03, P. O. Box 3354
Riyadh 11211, Saudi Arabia
shoukri@kfshrc.edu.sa

Also:
Department of Epidemiology and Biostatistics
Schulich School of Medicine
University of Western Ontario,
London, Ontario, Canada


