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Abstract: This paper describes a statistical model developing from Cor-
respondence Analysis to date archaeological contexts of the city of Tours
(France) and also to obtain an estimated absolute timescale. The data set
used in the study is reported as a contingency table of ceramics against con-
texts. But, as pottery is not intrinsically a dating indicator (a date is rarely
inscribed on each piece of pottery), we estimate dates of contexts from their
finds, and we use coins to attest the date of assemblages. The model-based
approach uses classical tools (correspondence analysis, linear regression and
resampling methods) in an iterative scheme. Archaeologists may find in
the paper a useful set of known statistical methods, while statisticians can
learn a way to order well known techniques. No method is new, but their
gathering is characteristic of this application.
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1. Introduction

The introduction of data analysis in archaeology took place long since, see for
instance updates in Buck (1999). The principal techniques of interest were first
of all multidimensional scaling and cluster analysis. In the eighties multivariate
analysis also consisting of Principal Component Analysis and Correspondence
Analysis (hereafter CA), were developing in the European countries. These sta-
tistical techniques have made a major contribution to almost all archaeological
problems like for example, chronological seriation. But they are generally viewed
as exploratory tools, allowing the researcher to avoid the fastidious computations
of elementary statistics, and also to summarize the data.

In this paper, we describe a statistical model developing from CA to date
archaeological contexts of the city of Tours (France) and also to obtain an esti-
mated absolute timescale. The important number of excavations achieved with
the same system of data recording during the last thirty-five years (1968-2002)
explains the interest of Tours (see Galinié, 2000). As pottery is a very good
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chronological indicator, its quantification can prove crucial, not only when com-
paring different archaeological contexts (or sets), but also as a help to answer cer-
tain archaeological and historical questions. The data set used can be reported
as a contingency table of archaeological contexts against a particular archaeo-
logical material (pottery): rows represent different fabrics and columns specify
archaeological contexts. The columns are separated into two groups. The first
one includes archaeological contexts for which dates are attested by coins, the
second one includes contexts whose dates are badly defined or unknown.

Several attempts have been made to assess the comparison of ceramic assem-
blages to establish absolute date of contexts, but never on the scale of a whole
town ((Djindjian, 1991); (Tyers and Orton, 1991); (Baxter, 1994) and (Orton,
2000)) and this statistical procedure tackled in three steps:

1. Investigation of the relationship between contexts and fabrics using cor-
respondence analysis ((Benzécri, 1973); (Greenacre, 1984) and (Moreau,
Doudin and Cazes, 2000)) to obtain chronological patterns.

2. Use of the secure representation of the contexts obtained previously, for the
purpose of estimating their date with a regression model.

3. Model checking as an essential component of this fitting process, including
resampling methods (jackknife and bootstrap).

This method provides an effective complementary tool for dating archaeolog-
ical contexts.

2. Archaeological Questions and Data Corpus

2.1 Data corpus

An important part of the archaeological study of pottery is the comparison of
ceramic assemblages in terms of their compositions. A ceramic assemblage can
be characterized by the proportions of different fabrics of pottery with which it is
made up. Various measures for quantifying pottery may be used, here we choose
minimum vessels count in which fragments are assumed to belong to the same
vessel unless they can be shown to belong to different ones.

Finally, we use a (r × c) data matrix called N consisting in:

• The 49 sets as columns (r = 49); the sets are ceramic assemblages, rep-
resenting the different human occupation stages of excavation (building,
possession and destruction of an edifice). They come from 6 excavations
in the city of Tours. The use of an homogeneous and precise stratigraphic
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recording system allows us to obtain many sets distributed in long sequences
.

• The 186 fabrics of pottery that represent the types of pottery in ceramic
assemblages, as rows (c = 186 ). Figure ?? presents four studied fabrics.

Figure 1: Four studied fabrics

2.2 Absolute dating ceramic assemblages in Tours

As pottery is not intrinsically a dating indicator (a date is rarely inscribed
on each piece of pottery), we estimate dates from contexts of their finds, and we
use coins to attest the date of assemblages. A more secured process to obtain
more reliable dates consists in conserving only the coin dates associated with a
building which is itself reliably dated by documentary evidence, and eliminating
or giving less importance to isolated coins. In our case, we retain 21 sets out of
49 for which absolute date is attested by coins, the others have no absolute date
(28).

A statistical approach, as we shall see in the following sections, may point
to dating accuracy of coins: an important chronological time-lag between dating
of coins and the estimated absolute dating of ceramic assemblages, may lead
to some archaeological reinterpretations of stratigraphic sequences (see
Figure 2).
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Figure 2: Studied sets stratigraphical sequences

3. Statistical Procedure

The statistical procedure uses classical tools (correspondence analysis, lin-
ear regression and resampling methods); its originality is the use of an iterative
scheme of the three steps as explained above in paragraph 1.

3.1 Correspondence Analysis

CA is well known as a technique for the display of rows (in our case fabrics)
and columns (in our case sets) of a two-way contingency table as points in a low-
dimensional vector space that is readily interpretable when displayed graphically.

When working on the (r × c) data matrix N , the best known method (and
among the oldest and most widely used one of multivariate techniques) is prin-
cipal component analysis (PCA) which may be presented in different ways. It
involves a mathematical procedure that transforms a number of (possibly) corre-
lated variables into a (smaller) number of uncorrelated variables called principal
components. It is a linear transformation that chooses a new coordinate system
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for the data set as such that the greatest variance by any projection of the data
set comes to lie on the first axis (called the first principal component), the sec-
ond greatest variance on the second axis, and so on. The objectives of principal
component analysis are to discover or to reduce the dimensionality of the data
set and to identify new meaningful underlying variables.

PCA is a method pertaining to factor analysis family ; CA is another mem-
ber of this family: it simultaneously characterizes the relationship among the
rows and also among the columns of a data matrix preferably, but not only, as a
contingency table. It may be outlined as a technique that can be used to study
interaction in a two-dimensional contingency table. The CA coordinates are anal-
ogous to those derived from a PCA, except that they are derived by partionning
the total chi-square statistic for the table, rather than total variance. In this
section, we will briefly examine correspondence analysis, but a full account is
available for example in (Greenacre, 1984).

If we write the table N = [nij], i = 1, · · · , r; j = 1, · · · , c, we first convert it
to a new table of observed proportions:

P = [pij =
nij

n..
] ∈ Mr×c,where n.. =

r∑
i=1

c∑
j=1

nij.

The row and column marginal frequencies are given by the vectors:

pi· = [
ni.

n..
] and p·j = [

n.j

n..
].

Diagonal matrices constructed from these vectors are denoted by Dr ∈ Mr×r

and Dc ∈ Mc×c respectively.
We may define:

• For each row i, a row profile ri = [nij

ni.
] (a (c × 1) vector which is a row

conditional proportions);

• For each column j, a column profile cj = [nij

n.j
] (a (r × 1) vector is a column

conditional proportions);

• The weighted average of the r profiles can be used to obtain an average
row profile by

∑r
i=1 ri(ni./n..) = p·j which is the (c × 1) vector of column

frequencies;

• The weighted average of the c profiles can be used to obtain an average
column profile given by

∑c
j=1 cj(n.j/n..) = pi· which is the (r × 1) vector

of row frequencies.
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When the two variables are independent, the frequencies to be expected in
the contingency table should not differ a lot of:

eij =
ni·n·j
n··

⇐⇒ pij = pi·p·j.

Having these notations in mind, we can analyze the matrix difference P− pi·p
′
·j

which is a measure of the deviation from independence.
For this matrix the Singular Value Decomposition subject to the conditions

A
′
D−1

r A = Ir, B
′
D−1

c B = Ic is given by:

P− pip
′
j = ADµB

′
=

K∑
k=1

µkakb
′
k

where D−1
r = diag(n−1

i· )i=1,...,r, D−1
c = diag(n−1

·j )i=1,...,c, K = min[(r − 1), (c −
1)] = rank

[
P − pip

′
j

]
, the K columns of A ∈ Mr×K and B ∈ Mc×K are

denoted by ak ∈ R
rand bk ∈ R

c respectively and µk are the diagonal elements of
the diagonal matrix Dµ.

Using A and B we may obtain coordinates for the row and column profile
deviations; µk(≤ 1) is a measure of the intensity of relation between rows and
columns. For example, a two-dimensional representation the column coordinates,
also named correspondence map of the column points, may be represented as
bjk, j = 1, 2, . . . , c; k = 1, 2.

We call total inertia or inertia the sum of the squares of the singular values:

tr[D−1
r (P − pi·p

′
·j)D

−1
c (P − pi·p

′
·j)] =

K∑
k=1

µ2
k = G2/n..

Total inertia can be viewed as a measure of the magnitude of the total row
squared deviations or equivalently the magnitude of the total column squared
deviations and the SVD can be used to allocate the total inertia to various di-
mensions and reflects the spread of points around the centroid. Total inertia is
linked with the so-called Pearson Chi-square statistic G2 used for testing the null
hypothesis H0 independence between rows and columns of a contingency table. It
may be written in different ways, the classical one being:

G2 =
r∑

i=1

c∑
j=1

(nij − eij)
2

eij
≈

(H0)
χ2 ((r − 1) (c − 1))

It may be easily interpreted as a global measure of distances over rows or over
columns and is known as the Chi-squared metric. It may also be written:
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G2 =
r∑

i=1

ni.(ri − pi·)
′
D−1

c (ri − pi·) =
c∑

j=1

n.j(cj − p·j)
′
D−1

r (cj − p·j)

Total inertia may be interpreted as the percentage of inertia(variance) in the
original correspondence table explained by all the computed dimensions in the
correspondence analysis. However, usually only the first dimensions are used in
the correspondence map, so the effective model will explain a percentage of inertia
in the original table equal to the sum of eigenvalues for these first dimensions
only. The adequacy of a one-or two-dimensional representation of the residuals
is judged by the proportion of the inertia explained by each dimension.

CA has a special interest due to its useful properties:

• With the Chi-squared metric, if two row profiles are identical they may be
replaced by a single row profile that is the sum of the two profiles. This
collapsing of the two rows will not affect the geometry of the column profiles.
If two row profiles are identical they occupy identical positions in the row
space. A symmetrical result is for columns.

• The relations (transition formulaes) between the row coordinates and the
column coordinates (with some precaution) allow to display both row and
column points in a single map, more or less as the classical biplot.

ak =
1
µk

D−1
r Nbk so that aik =

1
µk

c∑
j=1

nij

ni·
bjk

bk =
1
µk

D−1
c Nak so that bjk =

1
µk

r∑
ji1

nij

n·j
aik

• The method is a special case of canonical correlation, where one set of
entities (categories rather than variables as in conventional canonical cor-
relation) is related to another set.

• The extension of results for a two-way contingency table is easily done for
a multi-way one.

All these elements show the interest of CA as a good substitute of PCA in
a lot of practical situations and not only for contingency tables; an important
literature exists on the topic, mainly in French.
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It was first applied to archaeology in France in 1975, following the publication
of Benzécri (Benzécri, 1973), see for example (Djindjian, 1980) a first synthesis
of different applications to archaeology). In our study, it appears to be the
obvious technique because we are seriating archaeological contexts in terms of
counts of the types of pottery they contain. But it is important to underline
that contexts containing pottery assemblages could be some distance apart from
another, may have been used for different purposes (e.g. cooking and eating) or
there may be time-lags in the way of life changes between one context and the
next. Then, they generally cannot be put in a strict sequence, (Laxton, 1990)
has identified a potential problem for the use of CA when the standard pattern of
first appearance, a rise in population, a peak, a decline or a disappearance is not
satisfied. In that case, CA is not guaranteed to produce a correct sequence even
when the types are chronologically diagnosed ((Baxter, 1994), pages 118-123).
As developed in section 2, we see here too the importance of the archaeological
choice of the studied data corpus to obtain consistent statistical results. Indeed,
it will be important to justify the association of the order in the data (if such an
association exists) with time rather than some other dimension.

The CA on the N matrix (186× 49 at the beginning of the iterative scheme)
provided the classical results: eigen values, column and row factors coordinates
and others as contributions.

3.2 Regression on factors

Assuming yj represents the value of the response variable (coin date) on the
jh individual (a dated set), and that bj1, bj2, . . . , bjp represent the individual’s
values on p explanatory variables (the first p(= 4) column coordinates of the
CA), with j = 1, . . . , n(= 21). The multiple linear regression model is given by:

yj = β0 + β1bj1 + . . . + βpbjp + εj ; j = 1, . . . , n

where εj ,j = 1, . . . , n are assumed to be independent random variables having a
Normal distribution N (

0, σ2
)

; and β = [β0, β1, . . . , βp]′ is the parameter vector
of the model, known as the regression coefficients.

The multiple regression model can be written most conveniently using matri-
ces and vectors as:

y = Xβ + ε
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where y = [y1, y2, . . . , yn]′, ε = [ε1, ε2, . . . , εn]′ and

X =




1 b11 b12 . . . b1p

1 b21 b22 . . . b2p
...

...
...

...
1 bn1 bn2 . . . bnp


 = [1n,b(1)

1 ,b(1)
2 , . . . ,bp]

and vector b(1)
k contains the k column coordinates of the n dated sets derived

from CA.
Assuming that X′X is nonsingular, then the least-square estimator of the

parameter vector β is:
β̂ =

(
X′X

)−1 X′y

The regression analysis can be assessed using the classical analysis of variance
table.

The statistical procedure is summarized in Appendix.

3.3 Resampling methods (CA and date expected value)

There are many texts and articles on the subject; interested readers can find
details on resampling methods in a number of text books, such as (Davidson,
1997) which also give many examples and practicals. We compare the results of
different resampling methods.

In the following, each row in X is noted xj = [1, bj1, bj2, . . . , bjp]. It represents
the values of the explanatory variables for one of the individuals (sets) in the
sample, with the addition of unity to take account of the parameter β0.

The pottery assemblages variability: data corpus resampling

• Jackknife: to see if fabrics may have a strong influence on date estimation,
we have first used the jackknife on the N matrix. In our jackknife procedure,
the given statistic is recalculated for S = 186 fixed data sets that are subsets
of the original one. The following algorithm summarizes the calculation of
estimated dates and associated confidence sets:

Algorithm 1. For k = 1, . . . , S

(a) let N−k be the N matrix minus the kth row; then

(b) calculate the factors coordinates of the columns (sets) of N−k matrix
using a CA;

(c) fit least squares regression to (x1, y1), . . . , (xn, yn) where xj is the p-
vector of the selected factor coordinates of columns of N−k, giving
estimates β̂

(k)
(Jack) for β.
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We deduce a confidence interval for yi.

• Bootstrap: in the bootstrap procedure the recomputations are based on B
bootstrap data sets randomly chosen (bootstrap samples) of size 186 × 49
generated from the original one with B chosen so that the summary measure
of the individual statistics is nearly good when taking B = ∞. In our case,
B was fixed to 1000 in all bootstrap applications.

Algorithm 2. For b = 1, . . . , B

(a) generate a replicate population N (b) by sampling 186 times with re-
placement from the rows of N ;

(b) calculate the factor coordinates of the columns (sets) of N (b) matrix
using a CA;

(c) fit least squares regression to (x1, y1), . . . , (xn, yn) where xj is the p-
vector of the selected factor coordinates of columns of N (b), giving
estimates β̂∗

(b) and s2∗
(b) for the residual mean square σ2.

We obtain a bootstrap percentile confidence interval for yj. The
method just presented for obtaining a nonparametric confidence in-
terval for the expected value of date is the bootstrap percentile one.
It is the simplest but not necessarily the best performing bootstrap
method.

The dates variability: model residual resampling

• As we suppose that the xj are non-random in our linear regression model,
we decided to use the resampling scheme named bootstrapping residuals or
bootstrap based on residuals proposed by Efron (see for example (Efron and
Tibshirani, 1993)). The following algorithm summarizes the calculation of
estimated dates and confidence sets associated:

Algorithm 3.

(a) calculate the factor coordinates of the columns (sets) of N matrix;

(b) fit least squares regression to (x1, y1), . . . , (xn, yn): our model can be
identified as (β, Fε), where Fε is the common unknown distribution of
random variables εi centred and independent identically distributed,
abbreviated to i.i.d. The parameter β is estimated by the least square
estimator β̂ and Fε by the empirical distribution F̂ε putting mass n−1

to rj, j= 1, . . . , n, where rj = yj − xj β̂ are the residuals;

(c) model-based resampling:
For br = 1, . . . , B:
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(i) for j = 1, . . . , n
- randomly sample: generate i.i.d. data ε∗1, . . . , ε∗n from F̂ε (that
is from rj , j = 1, . . . , n); then
- define y∗j = xj β̂ + ε∗j .

(ii) fit least squares regression to (x1, y
∗
1), . . . , (xn, y∗n), giving esti-

mates β̂∗
(br) and s2∗

(br) for the residual mean square σ2;

(d) calculate the bootstrap percentile confidence interval for yj.

4. Results1

4.1 Correspondence analysis

The proportion of inertia accounted for by dimensions 1 to 7 are presented in
Table 1. The first seven dimensions account for 64.1% of the inertia and therefore
give an accurate representation of the fabrics/sets relationship.

Table 1: Inertia percentage accounted for by the first seven dimensions of CA.

Factor 1 2 3 4 5 6 7 Sum
% 24.2 11.6 8.7 6.7 4.9 4.2 3.7 64.1

We have analyzed in details:

• The contribution of set points to dimensions to intuit the meaning of cor-
respondence dimensions. The contribution of points to dimensions shows
the percentage in order of inertia of a particular dimension which is ex-
plained by a point. By looking at the more heavily loaded points, one may
deduce the meaning of a dimension. Contribution of points to dimensions
will add up to 1.0 across the categories of any one variable. We demoted
sets points {e27, e28, P1, N,R} from being an active one (category values of
the sets variables used to compute the dimensions) to being a supplemen-
tary one because they tend to influence the definition of dimensions. Then
we reintroduce these sets variables by computing their new coordinates as
supplementary ones. These can be plotted on the correspondence map also.
In our case we use supplementary sets points to handle outliers that may
unduly affect the computation of dimensions.

1Computations were carried out using the S-Plus or R statistical softwares
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• Contributions of dimensions (also known as the quality of representation
of the description of a point) to sets (column points). These reflect how
effective the correspondence analysis model is in explaining any given point.
That is, the contribution of dimensions to points is the percentage of vari-
ance in a point explained by a given dimension. One would like the points
on which one’s analysis focuses to have a high contribution of dimensions
to points value. Less analytic focus must be placed on points which are not
well described by the model. The sum of contributions of dimensions to
points will add up to 1.0 across all dimensions for a given point in the full
solution where all possible dimensions are computed.

A plot of the first two coordinates and also coordinates 1 and 3 are shown in
Figure 3:

Figure 3: Correspondence Analysis (e27, e28, P1, N and R as supplementary sets)

The interpretations of this diagram are the following:

• It is well known that a chronological sequence should be represented by
a ‘horse-shoe’ shaped curve on a CA plot (also known as the ‘arch’ or
‘Guttman’ effect). It arises for reasons discussed by Greenacre ((Greenacre,
1984), section 8.3). Indeed, the first factor is clearly linked with a trend
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that we shall identify as the best chronological seriation order because the
types in terms of which the units are being described are chronologically
sensitive (e.g. independent stratigraphic evidence). Since the second (resp.
third) factor is parabolic (resp. cubic), the regression model looks like a
polynomial one; but when we have tried to use a polynomial model with

b(1)
1 ,

(
b(1)

1

)2
. . . the results were not improved and are in fact even worse.

• We have more or less 3 groups of sets: {e100, e103, e104, e16, e6, e5} on
the right are the oldest, {S1, e25, e24, S3, S2, e23, e22, e20, e18, e12, e9,
e8} are in an intermediate position, and all the others are the more recent
ones. This pattern might reflect social and functional differences within the
city through time. It would be interesting to introduce the forms and not
only the fabrics (e.g. cooking-pots, jugs, bowls,..) to have perhaps a clearer
indication of the interpretation of this pattern; doing so, we would study
typological criteria (fabrics and forms) with regard not only to chronological
questions but to functional aspects of pottery.

4.2 Regression

We have dates attested by coins for a limited number sets (21) as shown
in Table 2. Sometimes, we have different available coins; it was decided, on
archaeological grounds, to choose one of them. Nevertheless we must remember
this choice during interpretation and data validation, to perhaps modify our first
choice.

Table 2: Values of observed dates for dated sets

set e16 e18 e20 e22 e8 e9 e27
date 850 1100 1100 1100 1100 1100 1296

set e28 D1 E D2 F G1a J2
date 1316 1350 1350 1436 1461 1470 1476

set G1b J3 H J1 M R P1
date 1488 1488 1510 1540 1540 1625 1640

As we are interested in prediction, associated with prediction intervals, for
n = 21 dated and 28 undated sets, it is firstly necessary to select a subset of
regressors (in our case, subset of the first p CA column coordinates). Hopefully,
the first ones were always the best in this selection; in some cases we could have
chosen fewer but not in their natural order of importance. This option would
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Table 3: Selected model

Corpus Selected model s df R2

N b1, b2, b3, b4 40.70 16 0.9709

s: residual standard deviation; df: degrees of freedom; R2: determination
coefficient.

Table 4: Predicted dates (90% confidence intervals)

set date Lower Pred Upper set date Lower Pred Upper

e16 850 807 875 943 e6 ? 813 880 947
e18 1100 1037 1069 1101 e23 ? 1128 1166 1205
e20 1100 1066 1100 1133 e12 ? 1157 1195 1233
e22 1100 1097 1127 1157 e24 ? 1182 1212 1242
e8 1100 1061 1094 1128 S2 ? 1209 1246 1284
e9 1100 1051 1080 1108 e25 ? 1221 1261 1301
e27 1296 1307 1339 1371 S3 ? 1235 1290 1345
e28 1316 1324 1359 1393 S1 ? 1262 1306 1351
D1 1350 1336 1363 1390 S4 ? 1285 1318 1352
E 1350 1333 1362 1392 C4 ? 1327 1344 1361
D2 1436 1310 1349 1388 B ? 1343 1376 1408
F 1461 1398 1417 1436 C3 ? 1356 1376 1397

G1a 1470 1461 1483 1504 C2 ? 1369 1388 1407
J2 1476 1465 1498 1532 C1 ? 1371 1390 1409

G1b 1488 1497 1521 1545 S5 ? 1422 1446 1470
J3 1488 1461 1495 1530 J4 ? 1432 1451 1471
H 1510 1525 1549 1574 S6 ? 1449 1498 1547
J1 1540 1476 1506 1535 K ? 1455 1479 1502
M 1540 1505 1527 1549 J6 ? 1461 1490 1519
R 1625 1592 1652 1713 G2 ? 1475 1496 1518
P1 1640 1541 1571 1601 P2 ? 1540 1569 1598

e104 ? 669 780 892 P3 ? 1550 1586 1622
e103 ? 742 831 919 P4 ? 1550 1585 1619
e100 ? 766 848 930 N ? 1571 1617 1663
e5 ? 802 868 933

Underlined values (lower or upper) indicate that the true value is out of range.
For dated sets the residuals range is −43 : 87.

have introduced more difficulties later, as we shall explain when using resam-
pling techniques. Individual regression coefficients were assessed by using the
ratio β̂j/SE

(
β̂j

)
: the four regression coefficients were significant2, the residual

standard deviation was minimal; so this model (Table 3) seems to be a good
candidate for a predictive purpose.

2The null hypothesis H0 : ”βj = 0” of t-test on the corresponding individual regression
coefficients was rejected (j = 1, ..., 4).
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This model is coherent with archaeological arguments, it will play the role of
our reference model. We may easily compute the predicted dates and intervals
for each quantification (Table 4).

Their precision will be scrutinized in section 4.3. But at first glance, we may
look at the mean range of different 90% confidence intervals. Their values are 75
years. The residuals distribution is based on a too limited set (21 residuals) to
validate or invalidate the Gaussian error distribution implied by our regression
model (Figure 4).

Figure 4: Histogram of residuals

From an archaeological point of view, the dates of sets, estimated by means
of pottery, are quite correct. The chronological bracketing of sets within a half-
century time span (90% predictive interval) is very precise for an archaeologist. In
fact, as often in applied statistics, the badly fitted data are rather more interesting
to analyze, because they oblige the archaeologist, being driven into a corner, to
scrutinize his data more deeply (for more details see (Husi et al., 2000), (Husi et
al., 2006) and (Bellanger et al., 2006).

Since we are interested in date prediction, in the following section, we con-
struct confidence sets for dating by using resampling methods. These computer-
intensive methods are useful when inference is based on a complex procedure for
which theoretical results are unavailable or difficult to use. Indeed in our case,
nonparametric resampling can take into account the two main sources of errors:
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Figure 5: Data clouds of four selected sets

• The pottery assemblages variability;

• The dates variability.

4.3 Resampling

Before having archaeological interpretation of both results, we may note the
fundamental differences between the two schemes:

• Under pottery data corpus resampling (in abbreviate resampling cases), the
design matrix N may change for each one and is generally not equal to the
original one. Of course, each factor differs to a certain extent (it is the rea-
son why we have chosen a fixed number of factors for quantification, taking
as an assumption that the matrix design for regression is defined in a fixed
subspace of dimension 4). This means that in our case with quite a large
data set, the design matrix is quite stable except if some few influential
fabrics exist. The framework of results interpretation will be similar to the
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jackknife one. This scheme also allows us to assess the statistical stabil-
ity of the CA scatterplots (see (Greenacre, 1984); (Lebart, Morineau and
Piron, 1995) and (Ringrose, 1992) for application to archaeological data).
It is more robust with regards to uncertainty of pottery data. Because per-
forming a new CA for each replicate matrix would lead to all the points’
coordinates being relative to different axes, we simply convert bootstrapped
sets of column profiles into points on the CA coordinate system calculated
from the original data. Moreover, as in practice it is only possible to exam-
ine a small number of clouds of points on one plot, we presented only the
‘confidence cloud’ of 4 selected sets (Figure 5).

• Under model residuals resampling, we can say that the scheme is more
efficient if the model is correct. This assumption is difficult to ascertain;
the results will point out the archaeological sets with great influence using
a jackknife after bootstrap inquiry. We may imagine that the results will be
more precise if we admit that uncertainty doesn’t concern data themselves.

When looking at the results (Table 5 for fitted dates), we can see that they
are generally homogenous; but what is more interesting is to note some dis-
crepancies in some of them which oblige us to try to interpret the reason why
is happened. To give two examples: e20, its jackknife estimation is quite differ-
ent, when other estimations are good; D2: always underestimated. This means,
once again, that a statistical analysis gives results, but is always a tool that
facilitates further inquiry.

Table 5: Fitted dates and residuals for N quantifications. P: classical model,
J: jackknife estimation, Bd: resampling cases.

Prediction Residual Prediction Residual

set date P J Bd rP rJ rBd set date P J Bd rP rJ rBd

e16 850 875 875 878 -25 -25 -28 F 1461 1417 1421 1419 44 40 42
e18 1100 1069 1060 1070 31 40 30 G1a 1470 1483 1457 1483 -13 13 -13
e20 1100 1100 1145 1102 0 -45 -2 J2 1476 1498 1504 1501 -22 -28 -25
e22 1100 1127 1141 1128 -27 -41 -28 G1b 1488 1521 1509 1524 -33 -21 -36
e8 1100 1094 1070 1091 6 30 9 J3 1488 1495 1500 1500 -7 -12 -12
e9 1100 1080 1052 1081 20 48 19 H 1510 1549 1561 1546 -39 -51 -36
e27 1296 1339 1338 1329 -43 -42 -33 J1 1540 1506 1505 1510 34 35 30
e28 1316 1359 1351 1351 -43 -35 -35 M 1540 1527 1522 1530 13 18 10
D1 1350 1363 1359 1373 -13 -9 -23 R 1625 1652 1697 1615 -27 -72 10
E 1350 1362 1357 1369 -12 -7 -19 P1 1640 1571 1569 1567 69 71 73
D2 1436 1349 1344 1368 87 92 68



152 L. Bellanger et al.

Another kind of information is provided by the estimated distribution of date
given by both bootstraps. The differences between estimation are in a short
interval (−10 : +10), except for some specific sets. The minimal and maximal
values have no intrinsic interest for resampling cases; but they may indicate
sensitivity to some fabrics deleted for one of 1000 samples.

5. Conclusion

Archaeology often treats multivariate analysis as a mechanical means to jus-
tify some archaeological reasoning and it is often used as such. It is important
to emphasize that it would be naive to presume that a mechanical process can
by itself act as a substitute for archaeological and statistical knowledge. The
way of thinking in terms of research process is important here. ‘No matter how
sophisticated methods are, or may become, they will never be able to make a judg-
ment of relevance between the individual variables. A [archaeological] judgment
of relevance has to be made before analysis starts, it has to continue throughout
the analyses, and it is entirely the responsibility of the archaeologist.’ (Madsen,
1988), page10).

In this article we used model-based statistical methods to establish absolute
date of archaeological contexts and an archaeological chronology of the city of
Tours. But we do not use prior information about the relative chronological
order of some of the contexts that is available. The use of Bayesian statistical
approaches might be seen as an appealing feature.

Appendix

The statistical procedure is summarized as follows:

We write N = [N (1) : N (2)] ∈ M186×49 . The first 21 columns of N are for
the dated sets y(1); while the last 28 columns of N are for the undated sets y(2).
The rows of N represent the 186 fabrics under consideration. For correspondence
analysis (CA), N is reduced to a 4 × 49 matrix of the form B = [B(1) : B(2)],
where B(1) ∈ M4×21 and B(2) ∈ M4×28. The 4 rows of B, each of dimension
1 × 49, are bj , j = 1, 2, 3, 4. We also decompose bj into bj = (b(1)

j ,b(2)
j ) with

proper dimensions 21 and 28 respectively.
These are the first 4 CA column (sets) coordinates. Regression of y(1) is

performed on 1,b(1)
1 , . . . ,b(1)

4 , with design matrix X = [1, B(1)]. The predicted
value of y(2) is based on 1,b(2)

1 , . . . ,b(2)
4 with design matrix of the form [1, b(2)]′.
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